Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37022810

RESUMO

Predictive coding, currently a highly influential theory in neuroscience, has not been widely adopted in machine learning yet. In this work, we transform the seminal model of Rao and Ballard (1999) into a modern deep learning framework while remaining maximally faithful to the original schema. The resulting network we propose (PreCNet) is tested on a widely used next-frame video prediction benchmark, which consists of images from an urban environment recorded from a car-mounted camera, and achieves state-of-the-art performance. Performance on all measures (MSE, PSNR, and SSIM) was further improved when a larger training set (2M images from BDD100k) pointed to the limitations of the KITTI training set. This work demonstrates that an architecture carefully based on a neuroscience model, without being explicitly tailored to the task at hand, can exhibit exceptional performance.

2.
PLoS Comput Biol ; 18(9): e1010464, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36103520

RESUMO

Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them-thus delineating our peripersonal space (PPS)-may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli-but critically is still present for receding stimuli when observation uncertainty is non-zero-, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies.


Assuntos
Espaço Pessoal , Percepção do Tato , Teorema de Bayes , Neurônios , Percepção Espacial/fisiologia , Tato/fisiologia , Percepção do Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA