Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Leukemia ; 36(6): 1575-1584, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461365

RESUMO

Acute myeloid leukemia (AML) is characterized by poor clinical outcomes due to high rates of relapse following standard-of-care induction chemotherapy. While many pathogenic drivers have been described in AML, our understanding of the molecular mechanisms mediating chemotherapy resistance remains poor. Therefore, we sought to identify resistance genes to induction therapy in AML and elucidated ALOX5 as a novel mediator of resistance to anthracycline-based therapy. ALOX5 is transcriptionally upregulated in AML patient blasts in comparison to normal hematopoietic stem/progenitor cells (HSPCs) and ALOX5 mRNA, and protein expression is increased in response to induction therapy. In vitro, and in vivo genetic, and pharmacologic perturbation studies confirm that ALOX5 positively regulates the leukemogenic potential of AML LSCs, and its loss does not significantly affect the function of normal HSPCs. ALOX5 mediates resistance to daunorubicin (DNR) and promotes AML cell survival and maintenance through its leukotriene (LT) synthetic capacity, specifically via modulating the synthesis of LTB4 and its binding to LTB receptor (BLTR). Our study reveals a previously unrecognized role of LTs in AML pathogenesis and chemoresistance, whereby inhibition of ALOX5 mediated LTB4 synthesis and function could be combined with standard chemotherapy, to enhance the overall therapeutic efficacy in AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/uso terapêutico , Autorrenovação Celular/genética , Daunorrubicina/farmacologia , Daunorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucotrieno B4/metabolismo , Leucotrieno B4/uso terapêutico , Células-Tronco Neoplásicas/patologia
2.
Stem Cell Res ; 45: 101837, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413789

RESUMO

Hemoglobin production during mammalian development is characterized by temporal switches of the genes coding for the α- and ß-globin chains. Defects in this controlled process can lead to hemoglobinapathies such as sickle cell disease and ß-thalassemia. The ability of human embryonic stem cells (hESC) to proceed through hematopoiesis could provide a clinically useful source of red blood cells. However, hESC-derived red cells exhibit an embryonic/fetal, but not adult, mode of hemoglobin expression. The resource described here is a hESC line engineered to express a reporter from its adult globin promoter, providing a screening platform for small molecules that lead to efficient induction of adult globin.


Assuntos
Edição de Genes , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Adulto , Animais , Linhagem Celular , Células-Tronco Embrionárias , Hematopoese , Humanos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
3.
Cell Stem Cell ; 19(1): 23-37, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27374788

RESUMO

Adipose tissue (AT) has previously been identified as an extra-medullary reservoir for normal hematopoietic stem cells (HSCs) and may promote tumor development. Here, we show that a subpopulation of leukemic stem cells (LSCs) can utilize gonadal adipose tissue (GAT) as a niche to support their metabolism and evade chemotherapy. In a mouse model of blast crisis chronic myeloid leukemia (CML), adipose-resident LSCs exhibit a pro-inflammatory phenotype and induce lipolysis in GAT. GAT lipolysis fuels fatty acid oxidation in LSCs, especially within a subpopulation expressing the fatty acid transporter CD36. CD36(+) LSCs have unique metabolic properties, are strikingly enriched in AT, and are protected from chemotherapy by the GAT microenvironment. CD36 also marks a fraction of human blast crisis CML and acute myeloid leukemia (AML) cells with similar biological properties. These findings suggest striking interplay between leukemic cells and AT to create a unique microenvironment that supports the metabolic demands and survival of a distinct LSC subpopulation.


Assuntos
Adaptação Fisiológica , Tecido Adiposo/patologia , Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Antineoplásicos/uso terapêutico , Crise Blástica/tratamento farmacológico , Crise Blástica/patologia , Antígenos CD36/metabolismo , Citoproteção/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Gônadas/patologia , Humanos , Inflamação/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Lipólise/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos
4.
Front Genet ; 5: 361, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25477897

RESUMO

Recent studies have significantly improved our understanding of the role microRNAs (miRNAs) play in regulating normal hematopoiesis. miRNAs are critical for maintaining hematopoietic stem cell function and the development of mature progeny. Thus, perhaps it is not surprising that miRNAs serve as oncogenes and tumor suppressors in hematologic malignancies arising from hematopoietic stem and progenitor cells, such as the myeloid disorders. A number of studies have extensively documented the widespread dysregulation of miRNA expression in human acute myeloid leukemia (AML), inspiring numerous explorations of the functional role of miRNAs in myeloid leukemogenesis. While these investigations have confirmed that a large number of miRNAs exhibit altered expression in AML, only a small fraction has been confirmed as functional mediators of AML development or maintenance. Herein, we summarize the miRNAs for which strong experimental evidence supports their functional roles in AML pathogenesis. We also discuss the implications of these studies on the development of miRNA-directed therapies in AML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA