Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Commun Biol ; 5(1): 446, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550593

RESUMO

Pathological tau inclusions are neuropathologic hallmarks of many neurodegenerative diseases. We generated and characterized a transgenic mouse model expressing pathogenic human tau with S320F and P301S aggregating mutations (SPAM) at transgene levels below endogenous mouse tau protein levels. This mouse model develops a predictable temporal progression of tau pathology in the brain with biochemical and ultrastructural properties akin to authentic tau inclusions. Surprisingly, pathogenic human tau extensively recruited endogenous mouse tau into insoluble aggregates. Despite the early onset and rapid progressive nature of tau pathology, major neuroinflammatory and transcriptional changes were only detectable at later time points. Moreover, tau SPAM mice are the first model to develop loss of enteric neurons due to tau accumulation resulting in a lethal phenotype. With moderate transgene expression, rapidly progressing tau pathology, and a highly predictable lethal phenotype, the tau SPAM model reveals new associations of tau neurotoxicity in the brain and intestinal tract.


Assuntos
Encéfalo , Proteínas tau , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34314701

RESUMO

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Assuntos
Cérebro/patologia , Proteína Semelhante a ELAV 4/genética , Ácido Glutâmico/metabolismo , Mutação/genética , Neurônios/patologia , Organoides/metabolismo , Splicing de RNA/genética , Proteínas tau/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Biomarcadores/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Hidrazonas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organoides/efeitos dos fármacos , Organoides/ultraestrutura , Fosforilação/efeitos dos fármacos , Pirimidinas/farmacologia , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Grânulos de Estresse/efeitos dos fármacos , Grânulos de Estresse/metabolismo , Sinapses/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
3.
J Biol Chem ; 294(48): 18488-18503, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31653695

RESUMO

tau is a microtubule (MT)-associated protein that promotes tubulin assembly and stabilizes MTs by binding longitudinally along the MT surface. tau can aberrantly aggregate into pathological inclusions that define Alzheimer's disease, frontotemporal dementias, and other tauopathies. A spectrum of missense mutations in the tau-encoding gene microtubule-associated protein tau (MAPT) can cause frontotemporal dementias. tau aggregation is postulated to spread by a prion-like mechanism. Using a cell-based inclusion seeding assay, we recently reported that only a few tau variants are intrinsically prone to this type of aggregation. Here, we extended these studies to additional tau mutants and investigated their MT binding properties in mammalian cell-based assays. A limited number of tau variants exhibited modest aggregation propensity in vivo, but most tau mutants did not aggregate. Reduced MT binding appeared to be the most common dysfunction for the majority of tau variants due to missense mutations, implying that MT-targeting therapies could potentially be effective in the management of tauopathies.


Assuntos
Predisposição Genética para Doença/genética , Microtúbulos/metabolismo , Proteínas tau/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
4.
Hum Mol Genet ; 28(19): 3255-3269, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31261380

RESUMO

Understanding the biological functions of tau variants can illuminate differential etiologies of Alzheimer's disease (AD) and primary tauopathies. Though the end-stage neuropathological attributes of AD and primary tauopathies are similar, the etiology and behavioral outcomes of these diseases follow unique and divergent trajectories. To study the divergent physiological properties of tau variants on a uniform immunogenetic background, we created somatic transgenesis CNS models of tauopathy utilizing neonatal delivery of adeno-associated viruses expressing wild-type (WT) or mutant tau in non-transgenic mice. We selected four different tau variants-WT tau associated with AD, P301L mutant tau associated with frontotemporal dementia (FTD), S320F mutant tau associated with Pick's disease and a combinatorial approach using P301L/S320F mutant tau. CNS-targeted expression of WT and P301L mutant tau results in robust tau hyperphosphorylation without tangle pathology, gradually developing age-progressive memory deficits. In contrast, the S320F variant, especially in combination with P301L, produces an AD-type tangle pathology, focal neuroinflammation and memory impairment on an accelerated time scale. Using the doubly mutated P301L/S320F tau variant, we demonstrate that combining different mutations can have an additive effect on neuropathologies and associated co-morbidities, possibly hinting at involvement of unique functional pathways. Importantly, we also show that overexpression of wild-type tau as well as an FTD-associated tau variant can lead to cognitive deficits even in the absence of tangles. Together, our data highlights the synergistic neuropathologies and associated cognitive and synaptic alterations of the combinatorial tau variant leading to a robust model of tauopathy.


Assuntos
Sistema Nervoso Central/metabolismo , Mutação , Tauopatias/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/psicologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Doença de Pick/genética , Doença de Pick/metabolismo , Doença de Pick/psicologia , Tauopatias/metabolismo , Tauopatias/psicologia
5.
J Exp Med ; 216(3): 539-555, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30770411

RESUMO

It has been challenging to produce ex vivo models of the inclusion pathologies that are hallmark pathologies of many neurodegenerative diseases. Using three-dimensional mouse brain slice cultures (BSCs), we have developed a paradigm that rapidly and robustly recapitulates mature neurofibrillary inclusion and Lewy body formation found in Alzheimer's and Parkinson's disease, respectively. This was achieved by transducing the BSCs with recombinant adeno-associated viruses (rAAVs) that express α-synuclein or variants of tau. Notably, the tauopathy BSC model enables screening of small molecule therapeutics and tracking of neurodegeneration. More generally, the rAAV BSC "toolkit" enables efficient transduction and transgene expression from neurons, microglia, astrocytes, and oligodendrocytes, alone or in combination, with transgene expression lasting for many months. These rAAV-based BSC models provide a cost-effective and facile alternative to in vivo studies, and in the future can become a widely adopted methodology to explore physiological and pathological mechanisms related to brain function and dysfunction.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Dependovirus/genética , Doença de Parkinson/patologia , Doença de Alzheimer/virologia , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Avaliação Pré-Clínica de Medicamentos/métodos , Expressão Gênica , Humanos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Microrganismos Geneticamente Modificados , Mutação , Neurônios/patologia , Técnicas de Cultura de Órgãos , Doença de Parkinson/virologia , Transdução Genética , Transgenes , alfa-Sinucleína/genética , Proteínas tau/genética
6.
Lab Invest ; 99(7): 912-928, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30742061

RESUMO

In multiple neurodegenerative diseases, including Alzheimer's disease (AD), a prominent pathological feature is the aberrant aggregation and inclusion formation of the microtubule-associated protein tau. Because of the pathological association, these disorders are often referred to as tauopathies. Mutations in the MAPT gene that encodes tau can cause frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), providing the clearest evidence that tauopathy plays a causal role in neurodegeneration. However, large gaps in our knowledge remain regarding how various FTDP-17-linked tau mutations promote tau aggregation and neurodegeneration, and, more generally, how the tauopathy is linked to neurodegeneration. Herein, we review what is known about how FTDP-17-linked pathogenic MAPT mutations cause disease, with a major focus on the prion-like properties of wild-type and mutant tau proteins. The hypothesized mechanisms by which mutations in the MAPT gene promote tauopathy are quite varied and may not provide definitive insights into how tauopathy arises in the absence of mutation. Further, differences in the ability of tau and mutant tau proteins to support prion-like propagation in various model systems raise questions about the generalizability of this mechanism in various tauopathies. Notably, understanding the mechanisms of tauopathy induction and spread and tau-induced neurodegeneration has important implications for tau-targeting therapeutics.


Assuntos
Agregação Patológica de Proteínas , Tauopatias/genética , Proteínas tau/genética , Animais , Humanos , Microtúbulos/metabolismo , Mutação , Transtornos Parkinsonianos/genética , Processamento de Proteína Pós-Traducional , Processamento de Proteína , Proteínas tau/metabolismo
7.
Neurosci Lett ; 692: 187-192, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30423399

RESUMO

Alzheimer's disease and other tauopathies are characterized by the brain accumulation of hyperphosphorylated aggregated tau protein forming pathological inclusions. Although elevated tau phosphorylated at many amino acid residues is a hallmark of pathological tau, some evidence suggest that tau phosphorylation at unique sites, especially within its microtubule-binding domain, might inhibit aggregation. In this study, the effects of phosphorylation of two unique residues within this domain, serine 305 (S305) and serine 320 (S320), were examined in the context of established aggregation and seeding models. It was found that the S305E phosphomimetic significantly inhibited both tau seeding and tau aggregation in this model, while S320E did not. To further explore S305 phosphorylation in vivo, a monoclonal antibody (2G2) specific for tau phosphorylated at S305 was generated and characterized. Consistent with inhibition of tau aggregation, phosphorylation of S305 was not detected in pathological tau inclusions in Alzheimer's disease brain tissue. This study indicates that phosphorylation of unique tau residues can be inhibitory to aggregate formation, and has important implications for potential kinase therapies. Additionally, it creates new tools for observing these changes in vivo.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Agregação Patológica de Proteínas/metabolismo , Serina/metabolismo , Proteínas tau/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Fosforilação , Proteínas tau/imunologia
8.
J Biol Chem ; 293(49): 18914-18932, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30327435

RESUMO

α-Synuclein (αsyn) aggregates into toxic fibrils in multiple neurodegenerative diseases where these fibrils form characteristic pathological inclusions such as Lewy bodies (LBs). The mechanisms initiating αsyn aggregation into fibrils are unclear, but ubiquitous post-translational modifications of αsyn present in LBs may play a role. Specific C-terminally (C)-truncated forms of αsyn are present within human pathological inclusions and form under physiological conditions likely in lysosome-associated pathways, but the roles for these C-truncated forms of αsyn in inclusion formation and disease are not well understood. Herein, we characterized the in vitro aggregation properties, amyloid fibril structures, and ability to induce full-length (FL) αsyn aggregation through prion-like mechanisms for eight of the most common physiological C-truncated forms of αsyn (1-115, 1-119, 1-122, 1-124, 1-125, 1-129, 1-133, and 1-135). In vitro, C-truncated αsyn aggregated more readily than FL αsyn and formed fibrils with unique morphologies. The presence of C-truncated αsyn potentiated aggregation of FL αsyn in vitro through co-polymerization. Specific C-truncated forms of αsyn in cells also exacerbated seeded aggregation of αsyn. Furthermore, in primary neuronal cultures, co-polymers of C-truncated and FL αsyn were potent prion-like seeds, but polymers composed solely of the C-truncated protein were not. These experiments indicated that specific physiological C-truncated forms of αsyn have distinct aggregation properties, including the ability to modulate the prion-like aggregation and seeding activity of FL αsyn. Proteolytic formation of these C-truncated species may have an important role in both the initiation of αsyn pathological inclusions and further progression of disease with strain-like properties.


Assuntos
Amiloide/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/imunologia , Animais , Anticorpos Monoclonais/imunologia , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/imunologia , Multimerização Proteica , Proteólise , alfa-Sinucleína/imunologia
10.
J Biol Chem ; 293(7): 2408-2421, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29259137

RESUMO

The accumulation of aberrantly aggregated MAPT (microtubule-associated protein Tau) defines a spectrum of tauopathies, including Alzheimer's disease. Mutations in the MAPT gene cause frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), characterized by neuronal pathological Tau inclusions in the form of neurofibrillary tangles and Pick bodies and in some cases glial Tau pathology. Increasing evidence points to the importance of prion-like seeding as a mechanism for the pathological spread in tauopathy and other neurodegenerative diseases. Herein, using a cell culture model, we examined a multitude of genetic FTDP-17 Tau variants for their ability to be seeded by exogenous Tau fibrils. Our findings revealed stark differences between FTDP-17 Tau variants in their ability to be seeded, with variants at Pro301 and Ser320 showing robust aggregation with seeding. Similarly, we elucidated the importance of certain Tau protein regions and unique residues, including the role of Pro301 in inhibiting Tau aggregation. We also revealed potential barriers in cross-seeding between three-repeat and four-repeat Tau isoforms. Overall, these differences alluded to potential mechanistic differences between wildtype and FTDP-17 Tau variants, as well as different Tau isoforms, in influencing Tau aggregation. Furthermore, by combining two FTDP-17 Tau variants (either P301L or P301S with S320F), we generated aggressive models of tauopathy that do not require exogenous seeding. These models will allow for rapid screening of potential therapeutics to alleviate Tau aggregation without the need for exogenous Tau fibrils. Together, these studies provide novel insights in the molecular determinants that modulate Tau aggregation.


Assuntos
Tauopatias/metabolismo , Proteínas tau/metabolismo , Motivos de Aminoácidos , Humanos , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Príons/química , Príons/genética , Príons/metabolismo , Agregados Proteicos , Tauopatias/genética , Proteínas tau/química , Proteínas tau/genética
11.
Acta Neuropathol Commun ; 5(1): 58, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28760159

RESUMO

Tauopathies are a group of neurodegenerative disorders, including Alzheimer's disease, defined by the presence of brain pathological inclusions comprised of abnormally aggregated and highly phosphorylated tau protein. The abundance of brain tau aggregates correlates with disease severity and select phospho-tau epitopes increase at early stages of disease. We generated and characterized a series of novel monoclonal antibodies directed to tau phosphorylated at several of these phospho-epitopes, including Ser396/Ser404, Ser404 and Thr205. We also generated phosphorylation independent antibodies against amino acid residues 193-211. We show that most of these antibodies are highly specific for tau and strongly recognize pathological inclusions in human brains and in a transgenic mouse model of tauopathy. They also reveal epitope-specific differences in the biochemical properties of Alzheimer's disease sarkosyl-insoluble tau. These new reagents will be useful for investigating the progression of tau pathology and further as tools to target the cellular transmission of tau pathology.


Assuntos
Anticorpos Monoclonais , Epitopos , Proteínas tau/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Hibridomas/metabolismo , Imuno-Histoquímica , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mutação , Fosforilação , Proteínas Recombinantes/metabolismo , Proteínas tau/deficiência , Proteínas tau/genética
13.
Sci Rep ; 5: 11178, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26058556

RESUMO

Single and repeated sports-related mild traumatic brain injury (mTBI), also referred to as concussion, can result in chronic post-concussive syndrome (PCS), neuropsychological and cognitive deficits, or chronic traumatic encephalopathy (CTE). However PCS is often difficult to diagnose using routine clinical, neuroimaging or laboratory evaluations, while CTE currently only can be definitively diagnosed postmortem. We sought to develop an animal model to simulate human repetitive concussive head injury for systematic study. In this study, mice received single or multiple head impacts by a stereotaxic impact device with a custom-made rubber tip-fitted impactor. Dynamic changes in MRI, neurobiochemical markers (Tau hyperphosphorylation and glia activation in brain tissues) and neurobehavioral functions such as anxiety, depression, motor function and cognitive function at various acute/subacute (1-7 day post-injury) and chronic (14-60 days post-injury) time points were examined. To explore the potential biomarkers of rCHI, serum levels of total Tau (T-Tau) and phosphorylated Tau (P-Tau) were also monitored at various time points. Our results show temporal dynamics of MRI consistent with structural perturbation in the acute phase and neurobiochemical changes (P-Tau and GFAP induction) in the subacute and chronic phase as well as development of chronic neurobehavioral changes, which resemble those observed in mTBI patients.


Assuntos
Lesão Encefálica Crônica/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Animais , Lesão Encefálica Crônica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA