Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 99: 86-95, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29738881

RESUMO

The Receptor-interacting protein kinase Homotypic Interaction Motif (RHIM) is an amino acid sequence that mediates multiple protein:protein interactions in the mammalian programmed cell death pathway known as necroptosis. At least one key RHIM-based complex has been shown to have a functional amyloid fibril structure, which provides a stable hetero-oligomeric platform for downstream signaling. RHIMs and related motifs are present in immunity-related proteins across nature, from viruses to fungi to metazoans. Necroptosis is a hallmark feature of cellular clearance of infection. For this reason, numerous pathogens, including viruses and bacteria, have developed varied methods to modulate necroptosis, focusing on inhibiting RHIM:RHIM interactions, and thus their downstream cell death effects. This review will discuss current understanding of RHIM:RHIM interactions in normal cellular activation of necroptosis, from a structural and cell biology perspective. It will compare the mechanisms by which pathogens subvert these interactions in order to maintain their replicative and infective cycles and consider the similarities between RHIMs and other functional amyloid-forming proteins associated with cell death and innate immunity. It will discuss the implications of the heteromeric nature and structure of RHIM-based amyloid complexes in the context of other functional amyloids.


Assuntos
Apoptose/imunologia , Necroptose/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Humanos , Imunidade Inata/imunologia , Ligação Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
EMBO Rep ; 20(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30498077

RESUMO

The murine cytomegalovirus protein M45 protects infected mouse cells from necroptotic death and, when heterologously expressed, can protect human cells from necroptosis induced by tumour necrosis factor receptor (TNFR) activation. Here, we show that the N-terminal 90 residues of the M45 protein, which contain a RIP homotypic interaction motif (RHIM), are sufficient to confer protection against TNFR-induced necroptosis. This N-terminal region of M45 drives rapid self-assembly into homo-oligomeric amyloid fibrils and interacts with the RHIMs of the human kinases RIPK1 and RIPK3, and the Z-DNA binding protein 1 (ZBP1), to form heteromeric amyloid fibrils in vitro Mutation of the tetrad residues in the M45 RHIM attenuates homo- and hetero-amyloid assembly by M45, suggesting that the amyloidogenic nature of the M45 RHIM underlies its biological activity. The M45 RHIM preferentially interacts with RIPK3 and ZBP1 over RIPK1 and alters the properties of the host RHIM protein assemblies. Our results indicate that M45 mimics the interactions made by RIPK1 or ZBP1 with RIPK3, thereby forming heteromeric amyloid structures, which may explain its ability to inhibit necroptosis.


Assuntos
Amiloide/metabolismo , Necroptose , Agregação Patológica de Proteínas/metabolismo , Multimerização Proteica , Ribonucleotídeo Redutases/metabolismo , Proteínas Virais/metabolismo , Amiloide/química , Amiloide/ultraestrutura , Amiloidose/etiologia , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ribonucleotídeo Redutases/química , Relação Estrutura-Atividade , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA