Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods Enzymol ; 694: 51-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492958

RESUMO

The ability of biophysicists to decipher the behavior of individual biomolecules has steadily improved over the past thirty years. However, it still remains unclear how an ensemble of data acquired at the single-molecule level compares with the data acquired on an ensemble of the same molecules. We here propose an assay to tackle this question in the context of dissociation equilibrium constant measurements. A sensor is built by engrafting a receptor and a ligand onto a flexible dsDNA scaffold and mounting this assembly on magnetic tweezers. This way, looking at the position of the magnetic bead enables one to determine in real-time if the two molecular partners are associated or not. Next, to quantify the affinity of the scrutinized single-receptor for a given competitor, various amounts of the latter molecule are introduced in solution and the equilibrium response of the sensor is monitored throughout the titration protocol. Proofs of concept are established for the binding of three rapamycin analogs to the FKBP12 cis-trans prolyl isomerase. For each of these drugs the mean affinity constant obtained on a ten of individual receptors agrees with the one previously determined in a bulk assay. Furthermore, experimental contingencies are sufficient to explain the dispersion observed over the single-molecule values.


Assuntos
DNA , Nanotecnologia , Ligantes , Ligação Proteica , DNA/química
2.
Nat Struct Mol Biol ; 22(6): 452-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25961799

RESUMO

We characterize in real time the composition and catalytic state of the initial Escherichia coli transcription-coupled repair (TCR) machinery by using correlative single-molecule methods. TCR initiates when RNA polymerase (RNAP) stalled by a lesion is displaced by the Mfd DNA translocase, thus giving repair components access to the damage. We previously used DNA nanomanipulation to obtain a nanomechanical readout of protein-DNA interactions during TCR initiation. Here we correlate this signal with simultaneous single-molecule fluorescence imaging of labeled components (RNAP, Mfd or RNA) to monitor the composition and localization of the complex. Displacement of stalled RNAP by Mfd results in loss of nascent RNA but not of RNAP, which remains associated with Mfd as a long-lived complex on the DNA. This complex translocates at ∼4 bp/s along the DNA, in a manner determined by the orientation of the stalled RNAP on the DNA.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Escherichia coli/enzimologia , Escherichia coli/fisiologia , DNA/metabolismo , Cinética , Microscopia de Fluorescência/métodos , Complexos Multienzimáticos/metabolismo , Imagem Óptica/métodos , Ligação Proteica , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA