RESUMO
Pramipexole (PPX) is a D2 and D3 dopamine receptor agonist approved for clinical use, which is associated with a higher risk of impulse-control disorders. Using a rat model, we recently found that low doses of the monoamine-depleting agent reserpine (RES; 1 mg/kg/day, SC) dramatically increased the untoward effects of PPX (0.3 mg/kg/day, SC) on probability discounting, a key impulsivity function. To further understand the neurobehavioral mechanisms underlying these effects, we first tested whether the combination of PPX and RES may lead to a generalized enhancement in risk taking, as tested in the suspended wire-beam paradigm. The association of RES and PPX did not augment the proclivity of rats to cross the bridge in order to obtain a reward, suggesting that the effects of RES and PPX on probability discounting do not reflect a generalized increase in impulsivity. We then studied what receptors mediate the effects of PPX in RES-treated rats. The combination of RES and PPX increased membrane expression and binding of D3, but not D2 dopamine receptors, in the nucleus accumbens. However, the behavioral effects of PPX and RES were not reduced by acute treatments with the D2/D3 receptor antagonist raclopride (0.01-0.05 mg/kg, SC), the highly selective D2 receptor antagonist L-741,626 (0.1-1 mg/kg, SC) or the D3 receptor antagonists GR 103691 (0.1-0.3 mg/kg, SC) and SB 277011A (1-10 mg/kg, SC). These findings collectively suggest that the effects of PPX in probability discounting do not reflect generalized enhancements in impulsivity or acute dopamine D2 or D3 receptor activation.
Assuntos
Desvalorização pelo Atraso/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Agonistas de Dopamina/toxicidade , Antagonistas dos Receptores de Dopamina D2/farmacologia , Pramipexol/toxicidade , Receptores de Dopamina D3/antagonistas & inibidores , Animais , Desvalorização pelo Atraso/fisiologia , Aprendizagem por Discriminação/fisiologia , Masculino , Ratos , Ratos Long-Evans , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismoRESUMO
The ontogeny of antisocial behavior (ASB) is rooted in complex gene-environment (G×E) interactions. The best-characterized of these interplays occurs between: a) low-activity alleles of the gene encoding monoamine oxidase A (MAOA), the main serotonin-degrading enzyme; and b) child maltreatment. The purpose of this study was to develop the first animal model of this G×E interaction, to help understand the neurobiological mechanisms of ASB and identify novel targets for its therapy. Maoa hypomorphic transgenic mice were exposed to an early-life stress regimen consisting of maternal separation and daily intraperitoneal saline injections and were then compared with their wild-type and non-stressed controls for ASB-related neurobehavioral phenotypes. Maoa hypomorphic mice subjected to stress from postnatal day (PND) 1 through 7 - but not during the second postnatal week - developed overt aggression, social deficits and abnormal stress responses from the fourth week onwards. On PND 8, these mice exhibited low resting heart rate - a well-established premorbid sign of ASB - and a significant and selective up-regulation of serotonin 5-HT2A receptors in the prefrontal cortex. Notably, both aggression and neonatal bradycardia were rescued by the 5-HT2 receptor antagonist ketanserin (1-3â¯mgâ¯kg-1, IP), as well as the selective 5-HT2A receptor blocker MDL-100,907 (volinanserin, 0.1-0.3â¯mgâ¯kg-1, IP) throughout the first postnatal week. These findings provide the first evidence of a molecular basis of G×E interactions in ASB and point to early-life 5-HT2A receptor activation as a key mechanism for the ontogeny of this condition. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Assuntos
Transtorno da Personalidade Antissocial/metabolismo , Interação Gene-Ambiente , Privação Materna , Receptor 5-HT2A de Serotonina/metabolismo , Estresse Psicológico/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Transtorno da Personalidade Antissocial/psicologia , Relação Dose-Resposta a Droga , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Estresse Psicológico/psicologiaRESUMO
Neural recording systems that interface with implanted microelectrodes are used extensively in experimental neuroscience and neural engineering research. Interface electronics that are needed to amplify, filter, and digitize signals from multichannel electrode arrays are a critical bottleneck to scaling such systems. This paper presents the design and testing of an electronic architecture for intracortical neural recording that drastically reduces the size per channel by rapidly multiplexing many electrodes to a single circuit. The architecture utilizes mixed-signal feedback to cancel electrode offsets, windowed integration sampling to reduce aliased high-frequency noise, and a successive approximation analog-to-digital converter with small capacitance and asynchronous control. Results are presented from a 180 nm CMOS integrated circuit prototype verified using in vivo experiments with a tungsten microwire array implanted in rodent cortex. The integrated circuit prototype achieves <0.004 mm² area per channel, 7 µW power dissipation per channel, 5.6 µVrms input referred noise, 50 dB common mode rejection ratio, and generates 9-bit samples at 30 kHz per channel by multiplexing at 600 kHz. General considerations are discussed for rapid time domain multiplexing of high-impedance microelectrodes. Overall, this work describes a promising path forward for scaling neural recording systems to numbers of electrodes that are orders of magnitude larger.
RESUMO
Pramipexole (PPX) is a high-affinity D2-like dopamine receptor agonist, used in the treatment of Parkinson's disease (PD) and restless leg syndrome. Recent evidence indicates that PPX increases the risk of problem gambling and impulse-control disorders in vulnerable patients. Although the molecular bases of these complications remain unclear, several authors have theorized that PPX may increase risk propensity by activating presynaptic dopamine receptors in the mesolimbic system, resulting in the reduction of dopamine release in the nucleus accumbens (NAcc). To test this possibility, we subjected rats to a probability-discounting task specifically designed to capture the response to disadvantageous options. PPX enhanced disadvantageous decision-making at a dose (0.3 mg/kg/day, SC) that reduced phasic dopamine release in the NAcc. To test whether these modifications in dopamine efflux were responsible for the observed neuroeconomic deficits, PPX was administered in combination with the monoamine-depleting agent reserpine (RES), at a low dose (1 mg/kg/day, SC) that did not affect baseline locomotor and operant responses. Contrary to our predictions, RES surprisingly exacerbated the effects of PPX on disadvantageous decision-making, even though it failed to augment PPX-induced decreases in phasic dopamine release. These results collectively suggest that PPX impairs the discounting of probabilistic losses and that the enhancement in risk-taking behaviors secondary to this drug may be dissociated from dynamic changes in mesolimbic dopamine release.
Assuntos
Benzotiazóis/administração & dosagem , Tomada de Decisões/efeitos dos fármacos , Tomada de Decisões/fisiologia , Dopamina/fisiologia , Núcleo Accumbens/fisiologia , Receptores de Dopamina D2/agonistas , Assunção de Riscos , Animais , Núcleo Caudado/metabolismo , Dopamina/metabolismo , Masculino , Norepinefrina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Doença de Parkinson/complicações , Pramipexol , Córtex Pré-Frontal/metabolismo , Probabilidade , Putamen/metabolismo , Ratos , Ratos Long-Evans , Serotonina/metabolismoRESUMO
BACKGROUND AND PURPOSE: The D1CT-7 mouse is one of the best known animal models of Tourette syndrome (TS), featuring spontaneous tic-like behaviours sensitive to standard TS therapies; these characteristics ensure a high face and predictive validity of this model, yet its construct validity remains elusive. To address this issue, we studied the responses of D1CT-7 mice to two critical components of TS pathophysiology: the exacerbation of tic-like behaviours in response to stress and the presence of sensorimotor gating deficits, which are thought to reflect the perceptual alterations causing the tics. EXPERIMENTAL APPROACH: D1CT-7 and wild-type (WT) littermates were subjected to a 20 min session of spatial confinement (SC) within an inescapable, 10 cm wide cylindrical enclosure. Changes in plasma corticosterone levels, tic-like behaviours and other spontaneous responses were measured. SC-exposed mice were also tested for the prepulse inhibition (PPI) of the startle response (a sensorimotor gating index) and other TS-related behaviours, including open-field locomotion, novel object exploration and social interaction and compared with non-confined counterparts. KEY RESULTS: SC produced a marked increase in corticosterone concentrations in both D1CT-7 and WT mice. In D1CT-7, but not WT mice, SC exacerbated tic-like and digging behaviours, and triggered PPI deficits and aggressive responses. Conversely, SC did not modify locomotor activity or novel object exploration in D1CT-7 mice. Both tic-like behaviours and PPI impairments in SC-exposed D1CT-7 mice were inhibited by standard TS therapies and D1 dopamine receptor antagonism. CONCLUSIONS AND IMPLICATIONS: These findings collectively support the translational and construct validity of D1CT-7 mice with respect to TS. LINKED ARTICLES: This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.