Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21669, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303866

RESUMO

After myocardial infarction (MI), epicardial cells reactivate their embryonic program, proliferate and migrate into the damaged tissue to differentiate into fibroblasts, endothelial cells and, if adequately stimulated, to cardiomyocytes. Targeting epicardium-derived stromal cells (EpiSC) by specific ligands might enable the direct imaging of EpiSCs after MI to better understand their biology, but also may permit the cell-specific delivery of small molecules to improve the post-MI healing process. Therefore, the aim of this study was to identify specific peptides by phage display screening to enable EpiSC specific cargo delivery by active targeting. To this end, we utilized a sequential panning of a phage library on cultured rat EpiSCs and then subtracted phage that nonspecifically bound blood immune cells. EpiSC specific phage were analyzed by deep sequencing and bioinformatics analysis to identify a total of 78 300 ± 31 900 different, EpiSC-specific, peptide insertion sequences. Flow cytometry of the five most highly abundant peptides (EP1, -2, -3, -7 or EP9) showed strong binding to EpiSCs but not to blood immune cells. The best binding properties were found for EP9 which was further studied by surface plasmon resonance (SPR). SPR revealed rapid and stable association of EpiSCs with EP9. As a negative control, THP-1 monocytes did not associate with EP9. Coupling of EP9 to perfluorocarbon nanoemulsions (PFCs) resulted in the efficient delivery of 19F cargo to EpiSCs and enabled their visualization by 19F MRI. Moreover, active targeting of EpiSCs by EP9-labelled PFCs was able to outcompete the strong phagocytic uptake of PFCs by circulating monocytes. In summary, we have identified a 7-mer peptide, (EP9) that binds to EpiSCs with high affinity and specificity. This peptide can be used to deliver small molecule cargos such as contrast agents to permit future in vivo tracking of EpiSCs by molecular imaging and to transfer small pharmaceutical molecules to modulate the biological activity of EpiSCs.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Infarto do Miocárdio/patologia , Pericárdio/citologia , Pericárdio/diagnóstico por imagem , Células Estromais , Animais , Células Cultivadas , Fluorocarbonos , Humanos , Peptídeos , Ratos , Ressonância de Plasmônio de Superfície , Células THP-1
2.
ACS Omega ; 4(2): 3790-3799, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459591

RESUMO

Magnetic separation is a promising alternative to conventional methods in downstream processing. This can facilitate easier handling, fewer processing steps, and more sustainable processes. Target materials can be extracted directly from crude cell lysates in a single step by magnetic nanoadsorbents with high-gradient magnetic fishing (HGMF). Additionally, the use of hazardous consumables for reducing downstream processing steps can be avoided. Here, we present proof of principle of one-step magnetic fishing from crude Escherichia coli cell lysate of a green fluorescent protein (GFP) with an attached hexahistidine (His6)-tag, which is used as the model target molecule. The focus of this investigation is the upscale to a liter scale magnetic fishing process in which a purity of 91% GFP can be achieved in a single purification step from cleared cell lysate. The binding through the His6-tag can be demonstrated, since no significant binding of nontagged GFP toward bare iron oxide nanoparticles (BIONs) can be observed. Nonfunctionalized BIONs with primary particle diameters of around 12 nm, as used in the process, can be produced with a simple and low-cost coprecipitation synthesis. Thus, HGMF with BIONs might pave the way for a new and greener era of downstream processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA