Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biol Sex Differ ; 15(1): 29, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561860

RESUMO

BACKGROUND: The insular cortex (IC) plays a pivotal role in processing interoceptive and emotional information, offering insights into sex differences in behavior and cognition. The IC comprises two distinct subregions: the anterior insular cortex (aIC), that processes emotional and social signals, and the posterior insular cortex (pIC), specialized in interoception and perception of pain. Pyramidal projection neurons within the IC integrate multimodal sensory inputs, influencing behavior and cognition. Despite previous research focusing on neuronal connectivity and transcriptomics, there has been a gap in understanding pyramidal neurons characteristics across subregions and between sexes. METHODS: Adult male and female C57Bl/6J mice were sacrificed and tissue containing the IC was collected for ex vivo slice electrophysiology recordings that examined baseline sex differences in synaptic plasticity and transmission within aIC and pIC subregions. RESULTS: Clear differences emerged between aIC and pIC neurons in both males and females: aIC neurons exhibited distinctive features such as larger size, increased hyperpolarization, and a higher rheobase compared to their pIC counterparts. Furthermore, we observed variations in neuronal excitability linked to sex, with male pIC neurons displaying a greater level of excitability than their female counterparts. We also identified region-specific differences in excitatory and inhibitory synaptic activity and the balance between excitation and inhibition in both male and female mice. Adult females demonstrated greater synaptic strength and maximum response in the aIC compared to the pIC. Lastly, synaptic long-term potentiation occurred in both subregions in males but was specific to the aIC in females. CONCLUSIONS: We conclude that there are sex differences in synaptic plasticity and excitatory transmission in IC subregions, and that distinct properties of IC pyramidal neurons between sexes could contribute to differences in behavior and cognition between males and females.


This study investigates differences in the insular cortex (IC), a region of the brain responsible for emotions and sensory perceptions, between male and female mice. The IC has two parts: the front (aIC) deals with emotions and social cues, while the back (pIC) is focused on sensing pain and bodily sensations. We examined specific brain cells called pyramidal neurons in both aIC and pIC and discovered noteworthy distinctions between these neurons in adult male and female mice. Firstly, aIC neurons were larger and had unique electrical properties in both male and female mice. Males had more excitable pIC neurons compared to females, indicating that their neurons were more likely to transmit signals. We also explored how these neurons communicate with each other through connections known as synapses. In adult females, the aIC had stronger connections than the pIC. Finally, we observed that specific types of basic synaptic learning occurred exclusively in males in the aIC. These findings underscore significant disparities in the IC between males and females, offering valuable insights into the potential reasons behind variations in behaviors and emotions between sexes.


Assuntos
Córtex Cerebral , Córtex Insular , Camundongos , Animais , Feminino , Masculino , Córtex Cerebral/fisiologia , Neurônios
2.
Biol Sex Differ ; 15(1): 18, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383408

RESUMO

BACKGROUND: Pup-dam ultrasonic vocalizations (USVs) are essential to cognitive and socio-emotional development. In autism and Fragile X Syndrome (FXS), disruptions in pup-dam USV communication hint at a possible connection between abnormal early developmental USV communication and the later emergence of communication and social deficits. METHODS: Here, we gathered USVs from PND 10 FXS pups during a short period of separation from their mothers, encompassing animals of all possible genotypes and both sexes (i.e., Fmr1-/y vs. Fmr1+/y males and Fmr1+/+, +/-, and -/- females). This allowed comparing the influence of sex and gene dosage on pups' communication capabilities. Leveraging DeepSqueak and analyzing vocal patterns, intricate vocal behaviors such as call structure, duration, frequency modulation, and temporal patterns were examined. Furthermore, homing behavior was assessed as a sensitive indicator of early cognitive development and social discrimination. This behavior relies on the use of olfactory and thermal cues to navigate and search for the maternal or nest odor in the surrounding space. RESULTS: The results show that FMRP-deficient pups of both sexes display an increased inclination to vocalize when separated from their mothers, and this behavior is accompanied by significant sex-specific changes in the main features of their USVs as well as in body weight. Analysis of the vocal repertoire and syntactic usage revealed that Fmr1 gene silencing primarily alters the USVs' qualitative composition in males. Moreover, sex-specific effects of Fmr1 silencing on locomotor activity and homing behavior were observed. FMRP deficiency in females increased activity, reduced nest-reaching time, and extended nest time. In males, it prolonged nest-reaching time and reduced nest time without affecting locomotion. CONCLUSIONS: These findings highlight the interplay between Fmr1 gene dosage and sex in influencing communicative and cognitive skills during infancy.


In this study, we investigated ultrasonic vocalizations (USVs) and homing behavior in a mouse model of Fragile X Syndrome (FXS), a leading genetic cause of autism spectrum disorder (ASD) caused by a mutation of the X-chromosome linked Fmr1 gene. Disruptions in pup-dam USV communication and cognitive skills may be linked to the later emergence of communication and social deficits in ASD. USVs were collected from 10-day-old FXS pups of all possible genotypes and both sexes during a short period of separation from their mothers. We utilized DeepSqueak, an advanced deep learning system, to examine vocal patterns and intricate vocal behaviors, including call structure, duration, frequency modulation, and their temporal patterns. Homing, a sensitive indicator of early cognitive development and social discrimination was assessed at P13. The results showed that FXS pups of both sexes displayed an increased inclination to vocalize when separated from their mothers. Examination of the vocal repertoire and its syntactic usage revealed that the silencing of the Fmr1 gene primarily alters the qualitative composition of ultrasonic communication in males. The sex-specific changes observed in USVs were accompanied by modifications in body weight. Regarding homing behavior, the deficiency of FMRP led to opposite deficits in activity, time to reach the nest, and nesting time depending on sex. Taken together, these findings highlight the interplay between Fmr1 gene dosage and sex in shaping communication and cognition during infancy.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Camundongos , Feminino , Masculino , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/psicologia , Vocalização Animal , Camundongos Knockout , Proteína do X Frágil da Deficiência Intelectual/genética , Cognição , Dosagem de Genes , Modelos Animais de Doenças
3.
Res Sq ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961241

RESUMO

Background: The insular cortex (IC) plays a pivotal role in processing interoceptive and emotional Information, offering insights into sex differences in behavior and cognition. The IC comprises two distinct subregions: the anterior insular cortex (alC), that processes emotional and social signals, and the posterior insular cortex (pIC), specialized in interoception and perception of pain. Pyramidal projection neurons within the IC integrate multimodal sensory inputs, influencing behavior and cognition. Despite previous research focusing on neuronal connectivity and transcriptomics, there has been a gap in understanding pyramidal neurons characteristics across subregions and between sexes. Methods: Adult male and female C57BI/6J mice were sacrificed and tissue containing the IC was collected for ex vivo slice electrophysiology recordings that examined baseline sex differences in synaptic plasticity and transmission within alC and pIC subregions. Results: Clear differences emerged between alC and pIC neurons In both males and females: alC neurons exhibited distinctive features such as larger size, increased hyperpolarizatlon, and a higher rheobase compared to their pIC counterparts. Furthermore, we observed variations in neuronal excitability linked to sex, with male pIC neurons displaying a greater level of excitability than their female counterparts. We also identified region-specific differences in excitatory and inhibitory synaptic activity and the balance between excitation and inhibition in both male and female mice. Adult females demonstrated greater synaptic strength and maximum response in the alC compared to the pIC. Lastly, synaptic long-term potentiation occurred in both subregions in males but was specific to the alC in females. Conclusions: We conclude that there are sex differences in synaptic plasticity and excitatory transmission in IC subregions, and that distinct properties of IC pyramidal neurons between sexes could contribute to differences in behavior and cognition between males and females.

4.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37905125

RESUMO

Background: The insular cortex (IC) plays a pivotal role in processing interoceptive and emotional information, offering insights into sex differences in behavior and cognition. The IC comprises two distinct subregions: the anterior insular cortex (aIC), that processes emotional and social signals, and the posterior insular cortex (pIC), specialized in interoception and perception of pain. Pyramidal projection neurons within the IC integrate multimodal sensory inputs, influencing behavior and cognition. Despite previous research focusing on neuronal connectivity and transcriptomics, there has been a gap in understanding pyramidal neurons characteristics across subregions and between sexes. Methods: Adult male and female C57Bl/6J mice were sacrificed and tissue containing the IC was collected for ex vivo slice electrophysiology recordings that examined baseline sex differences in synaptic plasticity and transmission within aIC and pIC subregions. Results: Clear differences emerged between aIC and pIC neurons in both males and females: aIC neurons exhibited distinctive features such as larger size, increased hyperpolarization, and a higher rheobase compared to their pIC counterparts. Furthermore, we observed variations in neuronal excitability linked to sex, with male pIC neurons displaying a greater level of excitability than their female counterparts. We also identified region-specific differences in excitatory and inhibitory synaptic activity and the balance between excitation and inhibition in both male and female mice. Adult females demonstrated greater synaptic strength and maximum response in the aIC compared to the pIC. Lastly, synaptic long-term potentiation occurred in both subregions in males but was specific to the aIC in females. Conclusions: We conclude that there are sex differences in synaptic plasticity and excitatory transmission in IC subregions, and that distinct properties of IC pyramidal neurons between sexes could contribute to differences in behavior and cognition between males and females. Highlights: - Distinctions specific to sex are present within subregions of the insular cortex (IC) in C57Bl/6J mice.- Pyramidal neurons in the anterior IC (aIC) exhibited larger size and distinct electrical properties. Adult females exhibited stronger synaptic responses in the aIC.- Conversely, male posterior insular cortex neurons displayed increased excitability.- Synaptic long-term potentiation was observed in both subregions in males, but it was exclusive to the aIC in females.- Sex-based variations in various aspects of excitatory transmission within IC subregions could contribute to differences in behavior and cognition between males and females. Plain language summary: This study investigates differences in the insular cortex (IC), a region of the brain responsible for emotions and sensory perceptions, between male and female mice. The IC has two parts: the front (aIC) deals with emotions and social cues, while the back (pIC) is focused on sensing pain and bodily sensations. We examined specific brain cells called pyramidal neurons in both aIC and pIC and discovered noteworthy distinctions between these neurons in adult male and female mice. Firstly, aIC neurons were larger and had unique electrical properties in both male and female mice. Males had more excitable pIC neurons compared to females, indicating that their neurons were more likely to transmit signals. We also explored how these neurons communicate with each other through connections known as synapses. In adult females, the aIC had stronger connections than the pIC. Finally, we observed that specific types of basic synaptic learning occurred exclusively in males in the aIC.These findings underscore significant disparities in the IC between males and females, offering valuable insights into the potential reasons behind variations in behaviors and emotions between sexes.

5.
Environ Sci Technol ; 57(19): 7370-7381, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37129408

RESUMO

Sea level rise (SLR) and heavy precipitation events are increasing the frequency and extent of coastal flooding, which can trigger releases of toxic chemicals from hazardous sites, many of which are in low-income communities of color. We used regression models to estimate the association between facility flood risk and social vulnerability indicators in low-lying block groups in California. We applied dasymetric mapping techniques to refine facility boundaries and population estimates and probabilistic SLR projections to estimate facilities' future flood risk. We estimate that 423 facilities are at risk of flooding in 2100 under a high emissions scenario (RCP 8.5). One unit standard deviation increases in nonvoters, poverty rate, renters, residents of color, and linguistically isolated households were associated with a 1.5-2.2 times higher odds of the presence of an at-risk site within 1 km (ORs [95% CIs]: 2.2 [1.8, 2.8], 1.9 [1.5, 2.3], 1.7 [1.4, 1.9], 1.5 [1.2, 1.9], and 1.5 [1.2, 1.9], respectively). Among block groups near at least one at-risk site, the number of sites increased with poverty, proportion of renters and residents of color, and lower voter turnout. These results underscore the need for further research and disaster planning that addresses the differential hazards and health risks of SLR.


Assuntos
Desastres , Inundações , Elevação do Nível do Mar , Vulnerabilidade Social , California
6.
Biochem Biophys Rep ; 30: 101275, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35592613

RESUMO

Many proteins display conformational changes resulting from allosteric regulation. Often only a few residues are crucial in conveying these structural and functional allosteric changes. These regions that undergo a significant change in structure upon receiving an input signal, such as molecular recognition, are defined as switch-like regions. Identifying these key residues within switch-like regions can help elucidate the mechanism of allosteric regulation and provide guidance for synthetic regulation. In this study, we combine a novel computational workflow with biochemical methods to identify a switch-like region in the N-terminal domain of human SIRT1 (hSIRT1), a lysine deacetylase that plays important roles in regulating cellular pathways. Based on primary sequence, computational methods predicted a region between residues 186-193 in hSIRT1 to exhibit switch-like behavior. Mutations were then introduced in this region and the resulting mutants were tested for allosteric reactions to resveratrol, a known hSIRT1 allosteric regulator. After fine-tuning the mutations based on comparison of known secondary structures, we were able to pinpoint M193 as the residue essential for allosteric regulation, likely by communicating the allosteric signal. Mutation of this residue maintained enzyme activity but abolished allosteric regulation by resveratrol. Our findings suggest a method to predict switch-like regions in allosterically regulated enzymes based on the primary sequence. If further validated, this could be an efficient way to identify key residues in enzymes for therapeutic drug targeting and other applications.

7.
Clim Change ; 170(3-4): 30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221398

RESUMO

Estimates of changes in the frequency or height of contemporary extreme sea levels (ESLs) under various climate change scenarios are often used by climate and sea level scientists to help communicate the physical basis for societal concern regarding sea level rise. Changes in ESLs (i.e., the hazard) are often represented using various metrics and indicators that, when anchored to salient impacts on human systems and the natural environment, provide useful information to policy makers, stakeholders, and the general public. While changes in hazards are often anchored to impacts at local scales, aggregate global summary metrics generally lack the context of local exposure and vulnerability that facilitates translating hazards into impacts. Contextualizing changes in hazards is also needed when communicating the timing of when projected ESL frequencies cross critical thresholds, such as the year in which ESLs higher than the design height benchmark of protective infrastructure (e.g., the 100-year water level) are expected to occur within the lifetime of that infrastructure. We present specific examples demonstrating the need for such contextualization using a simple flood exposure model, local sea level rise projections, and population exposure estimates for 414 global cities. We suggest regional and global climate assessment reports integrate global, regional, and local perspectives on coastal risk to address hazard, vulnerability and exposure simultaneously. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10584-021-03288-6.

8.
Heart Rhythm ; 19(1): 113-124, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563688

RESUMO

BACKGROUND: Electrophysiological (EP) properties have been studied mainly in the monocrotaline model of pulmonary arterial hypertension (PAH). Findings are confounded by major extrapulmonary toxicities, which preclude the ability to draw definitive conclusions regarding the role of PAH per se in EP remodeling. OBJECTIVE: The purpose of this study was to investigate the EP substrate and arrhythmic vulnerability of a new model of PAH that avoids extracardiopulmonary toxicities. METHODS: Sprague-Dawley rats underwent left pneumonectomy (Pn) followed by injection of the vascular endothelial growth factor inhibitor Sugen-5416 (Su/Pn). Five weeks later, cardiac magnetic resonance imaging was performed in vivo, optical action potential (AP) mapping ex vivo, and molecular analyses in vitro. RESULTS: Su/Pn rats exhibited right ventricular (RV) hypertrophy and were highly prone to pacing-induced ventricular tachycardia/fibrillation (VT/VF). Underlying this susceptibility was disproportionate RV-sided prolongation of AP duration, which promoted formation of right-sided AP alternans at physiological rates. While propagation was impaired at all rates in Su/Pn rats, the extent of conduction slowing was most severe immediately before the emergence of interventricular lines of block and onset of VT/VF. Measurement of the cardiac wavelength revealed a decrease in Su/Pn relative to control. Nav1.5 and total connexin 43 expression was not altered, while connexin 43 phosphorylation was decreased in PAH. Col1a1 and Col3a1 transcripts were upregulated coinciding with myocardial fibrosis. Once generated, VT/VF was sustained by multiple reentrant circuits with a lower frequency of RV activation due to wavebreak formation. CONCLUSION: In this pure model of PAH, we document RV-predominant remodeling that promotes multiwavelet reentry underlying VT. The Su/Pn model represents a severe form of PAH that allows the study of EP properties without the confounding influence of extrapulmonary toxicity.


Assuntos
Arritmias Cardíacas/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Remodelação Ventricular , Potenciais de Ação , Animais , Modelos Animais de Doenças , Indóis , Imageamento por Ressonância Magnética , Masculino , Pneumonectomia , Pirróis , Ratos , Ratos Sprague-Dawley , Toracotomia
9.
Nat Commun ; 12(1): 2720, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006886

RESUMO

In 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B-$14.0B, 5th-95th percentiles) of Sandy's damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40-131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.

10.
Resuscitation ; 152: 5-15, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32430288

RESUMO

AIM: We examined overall and temporal differences in out-of-hospital cardiac arrest (OHCA) care and outcomes by urban versus non-urban setting separately for North Carolina (NC) and Washington State (WA) during HeartRescue initiatives and associations of urban/non-urban settings with outcome by state. METHODS: OHCAs of presumed cardiac etiology from counties with complete registry enrollment in NC during 2010-2014 (catchment population = 3,143,809) and WA during 2011-2014 (catchment population = 3,653,506) were identified. Geospatial arrest location data and US Census classification were used to categorize urban areas with ≥50,000 versus non-urban <50,000 people. RESULTS: Included were 7731 NC cases (78.9% urban) and 4472 WA cases (85.8% urban). Bystander cardiopulmonary resuscitation (CPR) increased from 36.9% (2010) to 50.3% (2014) in NC non-urban areas versus 58.2% (2011) to 69.2% (2014) in WA; and from 39.3% to 51.1% in NC urban areas versus 52.4% to 61.8% in WA. Crude discharge survival odds ratio (OR) was 2.49 (95%CI 1.96-3.16) for urban versus non-urban NC cases not declared dead in field (N = 4241). Adjusted for age, sex, public location, bystander-witness status, time between emergency call and emergency medical service (EMS) arrival, calendar-year, bystander and first-responder CPR and defibrillation and direct PCI-center transport, OR was 1.30 (95%CI 0.98-1.73). In WA, corresponding crude and adjusted ORs were 1.38 (95%CI 0.99-1.93) and 1.46 (95%CI 1.00-2.13). In both states, bystander and first-responder CPR and defibrillation and direct PCI-hospital transport were associated with increased survival. CONCLUSIONS: During HeartRescue initiatives, bystander CPR increased in urban and non-urban locations. Bystander and first-responder interventions and direct PCI-hospital transport were associated with improved outcomes, including in non-urban areas.


Assuntos
Reanimação Cardiopulmonar , Serviços Médicos de Emergência , Parada Cardíaca Extra-Hospitalar , Intervenção Coronária Percutânea , Humanos , North Carolina/epidemiologia , Parada Cardíaca Extra-Hospitalar/epidemiologia , Parada Cardíaca Extra-Hospitalar/terapia , Washington/epidemiologia
11.
Acta Radiol ; 61(9): 1258-1265, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31928346

RESUMO

The modern-day radiologist must be adept at image interpretation, and the one who most successfully leverages new technologies may provide the highest value to patients, clinicians, and trainees. Applications of virtual reality (VR) and augmented reality (AR) have the potential to revolutionize how imaging information is applied in clinical practice and how radiologists practice. This review provides an overview of VR and AR, highlights current applications, future developments, and limitations hindering adoption.


Assuntos
Realidade Aumentada , Radiologia , Realidade Virtual , Humanos
12.
Circ Arrhythm Electrophysiol ; 12(12): e007569, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31813270

RESUMO

BACKGROUND: Despite a century of research, no clear quantitative framework exists to model the fundamental processes responsible for the continuous formation and destruction of phase singularities (PS) in cardiac fibrillation. We hypothesized PS formation/destruction in fibrillation could be modeled as self-regenerating Poisson renewal processes, producing exponential distributions of interevent times governed by constant rate parameters defined by the prevailing properties of each system. METHODS: PS formation/destruction were studied in 5 systems: (1) human persistent atrial fibrillation (n=20), (2) tachypaced sheep atrial fibrillation (n=5), (3) rat atrial fibrillation (n=4), (5) rat ventricular fibrillation (n=11), and (5) computer-simulated fibrillation. PS time-to-event data were fitted by exponential probability distribution functions computed using maximum entropy theory, and rates of PS formation and destruction (λf/λd) determined. A systematic review was conducted to cross-validate with source data from literature. RESULTS: In all systems, PS lifetime and interformation times were consistent with underlying Poisson renewal processes (human: λf, 4.2%/ms±1.1 [95% CI, 4.0-5.0], λd, 4.6%/ms±1.5 [95% CI, 4.3-4.9]; sheep: λf, 4.4%/ms [95% CI, 4.1-4.7], λd, 4.6%/ms±1.4 [95% CI, 4.3-4.8]; rat atrial fibrillation: λf, 33%/ms±8.8 [95% CI, 11-55], λd, 38%/ms [95% CI, 22-55]; rat ventricular fibrillation: λf, 38%/ms±24 [95% CI, 22-55], λf, 46%/ms±21 [95% CI, 31-60]; simulated fibrillation λd, 6.6-8.97%/ms [95% CI, 4.1-6.7]; R2≥0.90 in all cases). All PS distributions identified through systematic review were also consistent with an underlying Poisson renewal process. CONCLUSIONS: Poisson renewal theory provides an evolutionarily preserved universal framework to quantify formation and destruction of rotational events in cardiac fibrillation.


Assuntos
Potenciais de Ação , Fibrilação Atrial/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Modelos Cardiovasculares , Fibrilação Ventricular/fisiopatologia , Animais , Evolução Biológica , Simulação por Computador , Modelos Animais de Doenças , Humanos , Estudos Multicêntricos como Assunto , Estudos Observacionais como Assunto , Ratos , Reprodutibilidade dos Testes , Carneiro Doméstico , Processos Estocásticos , Fatores de Tempo , Fibrilação Ventricular/diagnóstico
13.
Nat Commun ; 10(1): 5752, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831733

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Circ Arrhythm Electrophysiol ; 12(11): e007382, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31726860

RESUMO

BACKGROUND: STIM1 (stromal interaction molecule 1) is a calcium (Ca2+) sensor that regulates cardiac hypertrophy by triggering store-operated Ca2+ entry. Because STIM1 binding to phospholamban increases sarcoplasmic reticulum Ca2+ load independent of store-operated Ca2+ entry, we hypothesized that it controls electrophysiological function and arrhythmias in the adult heart. METHODS: Inducible myocyte-restricted STIM1-KD (STIM1 knockdown) was achieved in adult mice using an αMHC (α-myosin heavy chain)-MerCreMer system. Mechanical and electrophysiological properties were examined using echocardiography in vivo and optical action potential (AP) mapping ex vivo in tamoxifen-induced STIM1flox/flox-Cretg/- (STIM1-KD) and littermate controls for STIM1flox/flox (referred to as STIM1-Ctl) and for Cretg/- without STIM deletion (referred to as Cre-Ctl). RESULTS: STIM1-KD mice (N=23) exhibited poor survival compared with STIM1-Ctl (N=22) and Cre-Ctl (N=11) with >50% mortality after only 8-days of cardiomyocyte-restricted STIM1-KD. STIM1-KD but not STIM1-Ctl or Cre-Ctl hearts exhibited a proclivity for arrhythmic behavior, ranging from frequent ectopy to pacing-induced ventricular tachycardia/ventricular fibrillation (VT/VF). Examination of the electrophysiological substrate revealed decreased conduction velocity and increased AP duration (APD) heterogeneity in STIM1-KD. These features, however, were comparable in VT/VF(+) and VT/VF(-) hearts. We also uncovered a marked increase in the magnitude of APD alternans during rapid pacing, and the emergence of a spatially discordant alternans profile in STIM1-KD hearts. Unlike conduction velocity slowing and APD heterogeneity, the magnitude of APD alternans was greater (by 80%, P<0.05) in VT/VF(+) versus VT/VF(-) STIM1-KD hearts. Detailed phase mapping during the initial beats of VT/VF identified one or more rotors that were localized along the nodal line separating out-of-phase alternans regions. CONCLUSIONS: In an adult murine model with inducible and myocyte-specific STIM1 depletion, we demonstrate for the first time the regulation of spatially discordant alternans by STIM1. Early mortality in STIM1-KD mice is likely related to enhanced susceptibility to VT/VF secondary to discordant APD alternans.


Assuntos
Arritmias Cardíacas/genética , Regulação da Expressão Gênica , Sistema de Condução Cardíaco/fisiopatologia , Miócitos Cardíacos/metabolismo , RNA/genética , Molécula 1 de Interação Estromal/genética , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Western Blotting , Cálcio/metabolismo , Modelos Animais de Doenças , Sistema de Condução Cardíaco/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retículo Sarcoplasmático/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Imagens com Corantes Sensíveis à Voltagem
15.
Nat Commun ; 10(1): 4844, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664024

RESUMO

Most estimates of global mean sea-level rise this century fall below 2 m. This quantity is comparable to the positive vertical bias of the principle digital elevation model (DEM) used to assess global and national population exposures to extreme coastal water levels, NASA's SRTM. CoastalDEM is a new DEM utilizing neural networks to reduce SRTM error. Here we show - employing CoastalDEM-that 190 M people (150-250 M, 90% CI) currently occupy global land below projected high tide lines for 2100 under low carbon emissions, up from 110 M today, for a median increase of 80 M. These figures triple SRTM-based values. Under high emissions, CoastalDEM indicates up to 630 M people live on land below projected annual flood levels for 2100, and up to 340 M for mid-century, versus roughly 250 M at present. We estimate one billion people now occupy land less than 10 m above current high tide lines, including 250 M below 1 m.

16.
Am J Physiol Heart Circ Physiol ; 317(1): H63-H72, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074653

RESUMO

The aim of the present study was to develop and study a new model of left atrial thrombus (LAT) in rat with congestive heart failure (CHF). CHF was induced by aortic banding for 2 mo, followed by ischemia-reperfusion (I/R) and subsequent aortic debanding for 1 mo. Cardiac function and the presence of LAT were assessed by echocardiography. Masson's staining was performed for histological analysis. All CHF rats presented with significantly decreased cardiac function, fibrosis in remote myocardium, and pulmonary edema. The incidence rate of LAT was 18.8% in the rats. LAT was associated with severity of aortic constriction, aortic pressure gradient, aortic blood flow velocity, and pulmonary edema but not myocardial infarction or a degree of left ventricular depression. The progressive process of thrombogenesis was characterized by myocyte hypertrophy, fibrosis, and inflammation in the left atrial wall. Fibrin adhesion and clot formation were observed, whereas most LAT presented as a relatively hard "mass," likely attributable to significant fibrosis in the middle and outer layers. Some LAT mass showed focal necrosis as well as fibrin bulging. Most LAT occurred at the upper anterior wall of the left atrial appendage. Aortic debanding had no significant impact on large LATs (>5 mm2) that had formed, whereas small LATs (<5 mm2) regressed 1 mo after aortic release. LAT is found in a rat model of aortic banding plus I/R followed by aortic debanding. The model provides a platform to study molecular mechanisms and potential new pathways for LAT treatment. NEW & NOTEWORTHY It is critically important to have a rodent model to study the molecular mechanism of thrombogenesis in the left atrium. Left atrial thrombus (LAT) is not a simple fibrin clot like those seen in peripheral veins or arteries. Rather, LAT is a cellular mass that likely develops in conjunction with blood clotting. Studying this phenomenon will help us understand congestive heart failure and promote new therapies for LAT.


Assuntos
Aorta/cirurgia , Vasos Coronários/cirurgia , Átrios do Coração/patologia , Insuficiência Cardíaca/etiologia , Traumatismo por Reperfusão Miocárdica/etiologia , Técnicas de Sutura , Trombose/complicações , Animais , Aorta/fisiopatologia , Função do Átrio Esquerdo , Remodelamento Atrial , Coagulação Sanguínea , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Ligadura , Masculino , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Ratos Sprague-Dawley , Trombose/sangue , Trombose/patologia , Trombose/fisiopatologia , Fatores de Tempo
17.
Cornea ; 38(6): 663-667, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30882539

RESUMO

PURPOSE: To describe 4 cases of presumably immunocompetent patients with herpes simplex virus (HSV) keratitis unresponsive (n = 3) or allergic (n = 1) to conventional antiviral therapy that improved with oral valganciclovir treatment. METHODS: Retrospective case series of 4 patients with HSV keratitis treated with oral valganciclovir between March 2016 and June 2018. RESULTS: We reviewed the records of 4 patients with recurrent epithelial HSV keratitis. Three patients were on antiviral prophylaxis because of a history of HSV keratitis. All patients were on oral acyclovir, valacyclovir, and/or famciclovir treatment with/without topical antiviral therapy for 4 to 6 months for prophylaxis and/or recurrent dendriform epithelial keratitis. While 3 patients had recurrent episodes during their active prophylaxis with oral antiviral therapies, one patient had a recurrence after she discontinued her oral prophylactic antiviral therapy due to recurrent self-reported allergic reactions. The patients presented with recurrent dendriform epithelial keratitis despite conventional antiviral therapy. We initiated oral valganciclovir 900 mg twice a day for 10 days as a treatment dose, followed by 900 mg daily for prophylaxis. The corneal epithelium subsequently healed within the first 2 weeks in all patients. The mean follow-up time for patients on valganciclovir prophylaxis was 8 months (range: 6-12 months), and none of the patients presented with any further recurrences. CONCLUSIONS: In case of treatment-related side effects or failure with conventional antiviral therapies, oral valganciclovir may present an alternative for the treatment and prophylaxis of HSV keratitis.


Assuntos
Antivirais/administração & dosagem , Ceratite Herpética/tratamento farmacológico , Valganciclovir/administração & dosagem , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
18.
J Mol Cell Cardiol ; 127: 20-30, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502350

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) results in right ventricular (RV) failure, electro-mechanical dysfunction and heightened risk of sudden cardiac death (SCD), although exact mechanisms and predisposing factors remain unclear. Because impaired chronotropic response to exercise is a strong predictor of early mortality in patients with PAH, we hypothesized that progressive elevation in heart rate can unmask ventricular tachyarrhythmias (VT) in a rodent model of monocrotaline (MCT)-induced PAH. We further hypothesized that intra-tracheal gene delivery of aerosolized AAV1.SERCA2a (AAV1.S2a), an approach which improves pulmonary vascular remodeling in PAH, can suppress VT in this model. OBJECTIVE: To determine the efficacy of pulmonary AAV1.S2a in reversing electrophysiological (EP) remodeling and suppressing VT in PAH. METHODS: Male rats received subcutaneous injection of MCT (60 mg/kg) leading to advanced PAH. Three weeks following MCT, rats underwent intra-tracheal delivery of aerosolized AAV1.S2a (MCT + S2a, N = 8) or saline (MCT, N = 9). Age-matched rats served as controls (CTRL, N = 7). The EP substrate and risk of VT were determined using high-resolution optical action potential (AP) mapping ex vivo. The expression levels of key ion channel subunits, fibrosis markers and hypertrophy indices were measured by RT-PCR and histochemical analyses. RESULTS: Over 80% of MCT but none of the CTRL hearts were prone to sustained VT by rapid pacing (P < .01). Aerosolized gene delivery of AAV1.S2a to the lung suppressed the incidence of VT to <15% (P < .05). Investigation of the EP substrate revealed marked prolongation of AP duration (APD), increased APD heterogeneity, a reversal in the trans-epicardial APD gradient, and marked conduction slowing in untreated MCT compared to CTRL hearts. These myocardial EP changes coincided with major remodeling in the expression of K and Ca channel subunits, decreased expression of Cx43 and increased expression of pro-fibrotic and pro-hypertrophic markers. Intra-tracheal gene delivery of aerosolized AAV1 carrying S2a but not luciferase resulted in selective upregulation of the human isoform of SERCA2a in the lung but not the heart. This pulmonary intervention, in turn, ameliorated MCT-induced APD prolongation, reversed spatial APD heterogeneity, normalized myocardial conduction, and suppressed the incidence of pacing-induced VT. Comparison of the minimal conduction velocity (CV) generated at the fastest pacing rate before onset of VT or at the end of the protocol revealed significantly lower values in untreated compared to AAV1.S2a treated PAH and CTRL hearts. Reversal of EP remodeling by pulmonary AAV1.S2a gene delivery was accompanied by restored expression of key ion channel transcripts. Restored expression of Cx43 and collagen but not the pore-forming Na channel subunit Nav1.5 likely ameliorated VT by improving CV at rapid rates in PAH. CONCLUSION: Aerosolized AAV1.S2a gene delivery selectively to the lungs ameliorates myocardial EP remodeling and VT susceptibility at rapid heart rates. Our findings highlight for the first time the utility of a non-cardiac gene therapy approach for arrhythmia suppression.


Assuntos
Aerossóis/administração & dosagem , Arritmias Cardíacas/terapia , Técnicas de Transferência de Genes , Hipertensão Arterial Pulmonar/terapia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/uso terapêutico , Traqueia/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Terapia Genética , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Masculino , Canais de Potássio/genética , Canais de Potássio/metabolismo , Hipertensão Arterial Pulmonar/complicações , Hipertensão Arterial Pulmonar/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
19.
Methods Mol Biol ; 1816: 133-143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29987816

RESUMO

Ischemia-reperfusion (I/R) injury causes dynamic changes in electrophysiological properties that promote the incidence of post-ischemic arrhythmias. High-resolution optical action potential mapping allows for a quantitative assessment of the electrophysiological substrate at a cellular resolution within the intact heart, which is critical for elucidation of arrhythmia mechanisms. We and others have found that pharmacological inhibition of the translocator protein (TSPO) is highly effective against postischemic arrhythmias. A major hurdle that has limited the translation of this approach to patients is the fact that available TSPO ligands have several confounding effects, including a potent negative ionotropic property. To circumvent such limitations we developed an in vivo cardiac specific TSPO gene silencing approach as an alternative. Here, we provide the methodological details of our optical action potential mapping studies that were designed to probe the effects of TSPO silencing in hearts from spontaneously hypertensive rats (SHR) that are prone to I/R injury.


Assuntos
Arritmias Cardíacas/diagnóstico por imagem , Proteínas de Transporte da Membrana Mitocondrial/análise , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/genética , Desenho de Equipamento , Inativação Gênica , Masculino , Proteínas de Transporte da Membrana Mitocondrial/genética , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/genética , Perfusão/instrumentação , Perfusão/métodos , Ratos , Ratos Endogâmicos SHR , Imagens com Corantes Sensíveis à Voltagem/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA