RESUMO
A genomic database of all Earth's eukaryotic species could contribute to many scientific discoveries; however, only a tiny fraction of species have genomic information available. In 2018, scientists across the world united under the Earth BioGenome Project (EBP), aiming to produce a database of high-quality reference genomes containing all ~1.5 million recognized eukaryotic species. As the European node of the EBP, the European Reference Genome Atlas (ERGA) sought to implement a new decentralised, equitable and inclusive model for producing reference genomes. For this, ERGA launched a Pilot Project establishing the first distributed reference genome production infrastructure and testing it on 98 eukaryotic species from 33 European countries. Here we outline the infrastructure and explore its effectiveness for scaling high-quality reference genome production, whilst considering equity and inclusion. The outcomes and lessons learned provide a solid foundation for ERGA while offering key learnings to other transnational, national genomic resource projects and the EBP.
RESUMO
MOTIVATION: Existing nanopore single-cell data analysis tools showed severe limitations in handling current data sizes. RESULTS: We introduce scywalker, an innovative and scalable package developed to comprehensively analyze long-read sequencing data of full-length single-cell or single-nuclei cDNA. We developed novel scalable methods for cell barcode demultiplexing and single-cell isoform calling and quantification and incorporated these in an easily deployable package. Scywalker streamlines the entire analysis process, from sequenced fragments in FASTQ format to demultiplexed pseudobulk isoform counts, into a single command suitable for execution on either server or cluster. Scywalker includes data quality control, cell type identification, and an interactive report. Assessment of datasets from the human brain, Arabidopsis leaves, and previously benchmarked data from mixed cell lines demonstrate excellent correlation with short-read analyses at both the cell-barcoding and gene quantification levels. At the isoform level, we show that scywalker facilitates the direct identification of cell-type-specific expression of novel isoforms. AVAILABILITY AND IMPLEMENTATION: Scywalker is available on github.com/derijkp/scywalker under the GNU General Public License (GPL) and at https://zenodo.org/records/13359438/files/scywalker-0.108.0-Linux-x86_64.tar.gz.
Assuntos
Análise de Célula Única , Software , Fluxo de Trabalho , Análise de Célula Única/métodos , Humanos , Transcriptoma/genética , Arabidopsis/genética , Encéfalo/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodosRESUMO
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by a constant accumulation of lipids in the liver. This hepatic lipotoxicity is associated with a dysregulation of the first step in lipid catabolism, known as beta oxidation, which occurs in the mitochondrial matrix. Eventually, this dysregulation will lead to mitochondrial dysfunction. To evaluate the possible involvement of mitochondrial DNA methylation in this lipid metabolic dysfunction, we investigated the functional metabolic effects of mitochondrial overexpression of CpG (MSssI) and GpC (MCviPI) DNA methyltransferases in relation to gene expression and (mito)epigenetic signatures. Overall, the results show that mitochondrial GpC and, to a lesser extent, CpG methylation increase bile acid metabolic gene expression, inducing the onset of cholestasis through mito-nuclear epigenetic reprogramming. Moreover, both increase the expression of metabolic nuclear receptors and thereby induce basal overactivation of mitochondrial respiration. The latter promotes mitochondrial swelling, favoring lipid accumulation and metabolic-stress-induced mitophagy and autophagy stress responses. In conclusion, both mitochondrial GpC and CpG methylation create a metabolically challenging environment that induces mitochondrial dysfunction, which may contribute to the progression of MASLD.
Assuntos
Fígado Gorduroso , Mitofagia , Humanos , Mitofagia/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Fígado Gorduroso/metabolismo , Estresse Fisiológico , LipídeosRESUMO
Arabidopsis (Arabidopsis thaliana) transfer DNA (T-DNA) insertion collections are popular resources for fundamental plant research. Cinnamoyl-CoA reductase 1 (CCR1) catalyzes an essential step in the biosynthesis of the cell wall polymer lignin. Accordingly, the intronic T-DNA insertion mutant ccr1-6 has reduced lignin levels and shows a stunted growth phenotype. Here, we report restoration of the ccr1-6 mutant phenotype and CCR1 expression levels after a genetic cross with a UDP-glucosyltransferase 72e1 (ugt72e1),-e2,-e3 T-DNA mutant. We discovered that the phenotypic recovery was not dependent on the UGT72E family loss of function but due to an epigenetic phenomenon called trans T-DNA suppression. Via trans T-DNA suppression, the gene function of an intronic T-DNA mutant was restored after the introduction of an additional T-DNA sharing identical sequences, leading to heterochromatinization and splicing out of the T-DNA-containing intron. Consequently, the suppressed ccr1-6 allele was named epiccr1-6. Long-read sequencing revealed that epiccr1-6, not ccr1-6, carries dense cytosine methylation over the full length of the T-DNA. We showed that the SAIL T-DNA in the UGT72E3 locus could trigger the trans T-DNA suppression of the GABI-Kat T-DNA in the CCR1 locus. Furthermore, we scanned the literature for other potential cases of trans T-DNA suppression in Arabidopsis and found that 22% of the publications matching our query report on double or higher-order T-DNA mutants that meet the minimal requirements for trans T-DNA suppression. These combined observations indicate that intronic T-DNA mutants need to be used with caution since methylation of intronic T-DNA might derepress gene expression and can thereby confound results.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Lignina/metabolismo , Mutação/genética , DNA Bacteriano/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigênese Genética , Glucosiltransferases/metabolismoRESUMO
INTRODUCTION: Despite increasing evidence of a role of rare genetic variation in the risk of Alzheimer's disease (AD), limited attention has been paid to its contribution to AD-related biomarker traits indicative of AD-relevant pathophysiological processes. METHODS: We performed whole-exome gene-based rare-variant association studies (RVASs) of 17 AD-related traits on whole-exome sequencing (WES) data generated in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study (n = 450) and whole-genome sequencing (WGS) data from ADNI (n = 808). RESULTS: Mutation screening revealed a novel probably pathogenic mutation (PSEN1 p.Leu232Phe). Gene-based RVAS revealed the exome-wide significant contribution of rare coding variation in RBKS and OR7A10 to cognitive performance and protection against left hippocampal atrophy, respectively. DISCUSSION: The identification of these novel gene-trait associations offers new perspectives into the role of rare coding variation in the distinct pathophysiological processes culminating in AD, which may lead to identification of novel therapeutic and diagnostic targets.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Exoma/genética , Estudos de Associação Genética , Fenótipo , BiomarcadoresRESUMO
Acinetobacter baumannii is an opportunistic pathogenic bacterium prioritized by WHO and CDC because of its increasing antibiotic resistance. Heterogeneity among strains represents the hallmark of A. baumannii bacteria. We wondered to what extent extensively used strains, so-called reference strains, reflect the dynamic nature and intrinsic heterogeneity of these bacteria. We analyzed multiple phenotypic traits of 43 nonredundant, modern, and multidrug-resistant, extensively drug-resistant, and pandrug-resistant clinical isolates and broadly used strains of A. baumannii. Comparison of these isolates at the genetic and phenotypic levels confirmed a high degree of heterogeneity. Importantly, we observed that a significant portion of modern clinical isolates strongly differs from several historically established strains in the light of colony morphology, cellular density, capsule production, natural transformability, and in vivo virulence. The significant differences between modern clinical isolates of A. baumannii and established strains could hamper the study of A. baumannii, especially concerning its virulence and resistance mechanisms. Hence, we propose a variable collection of modern clinical isolates that are characterized at the genetic and phenotypic levels, covering a wide range of the phenotypic spectrum, with six different macrocolony type groups, from avirulent to hypervirulent phenotypes, and with naturally noncapsulated to hypermucoid strains, with intermediate phenotypes as well. Strain-specific mechanistic observations remain interesting per se, and established "reference" strains have undoubtedly been shown to be very useful to study basic mechanisms of A. baumannii biology. However, any study based on a specific strain of A. baumannii should be compared to modern and clinically relevant isolates. IMPORTANCE Acinetobacter baumannii is a bacterium prioritized by the CDC and WHO because of its increasing antibiotic resistance, leading to treatment failures. The hallmark of this pathogen is the high heterogeneity observed among isolates, due to a very dynamic genome. In this context, we tested if a subset of broadly used isolates, considered "reference" strains, was reflecting the genetic and phenotypic diversity found among currently circulating clinical isolates. We observed that the so-called reference strains do not cover the whole diversity of the modern clinical isolates. While formerly established strains successfully generated a strong base of knowledge in the A. baumannii field and beyond, our study shows that a rational choice of strain, related to a specific biological question, should be taken into consideration. Any data obtained with historically established strains should also be compared to modern and clinically relevant isolates, especially concerning drug screening, resistance, and virulence contexts.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/microbiologia , Fenótipo , Farmacorresistência Bacteriana Múltipla/genéticaRESUMO
In this study, we characterize a new collection that comprises multidrug-resistant (MDR), extensively drug-resistant (XDR), pandrug-resistant (PDR), and carbapenem-resistant modern clinical isolates of Acinetobacter baumannii collected from hospitals through national microbiological surveillance in Belgium. Bacterial isolates (n = 43) were subjected to whole-genome sequencing (WGS), combining Illumina (MiSeq) and Nanopore (MinION) technologies, from which high-quality genomes (chromosome and plasmids) were de novo assembled. Antimicrobial susceptibility testing was performed along with genome analyses, which identified intrinsic and acquired resistance determinants along with their genetic environments and vehicles. Furthermore, the bacterial isolates were compared to the most prevalent A. baumannii sequence type 2 (ST2) (Pasteur scheme) genomes available from the BIGSdb database. Of the 43 strains, 40 carried determinants of resistance to carbapenems; blaOXA-23 (n = 29) was the most abundant acquired antimicrobial resistance gene, with 39 isolates encoding at least two different types of OXA enzymes. According to the Pasteur scheme, the majority of the isolates were globally disseminated clones of ST2 (n = 25), while less frequent sequence types included ST636 (n = 6), ST1 (n = 4), ST85 and ST78 (n = 2 each), and ST604, ST215, ST158, and ST10 (n = 1 each). Using the Oxford typing scheme, we identified 22 STs, including two novel types (ST2454 and ST2455). While the majority (26/29) of blaOXA-23 genes were chromosomally carried, all blaOXA-72 genes were plasmid borne. Our results show the presence of high-risk clones of A. baumannii within Belgian health care facilities with frequent occurrences of genes encoding carbapenemases, highlighting the crucial need for constant surveillance.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genômica , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , beta-Lactamases/genéticaRESUMO
Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/genética , Biomarcadores , Proteína 1 Semelhante à Quitinase-3/genética , Proteínas de Ligação a DNA , Ácido Ditionitrobenzoico , Humanos , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intercelular , Neurogranina/genética , Fatores de Transcrição , Proteínas tauRESUMO
We identify a new mechanism mediating capsule production and virulence in the WHO and CDC priority ESKAPE pathogen Acinetobacter baumannii. Non-capsulated and avirulent bacteria can revert into a capsulated and virulent state upon scarless excision of an ISAba13 insertion sequence under stress conditions. Reversion events fully restore capsule production and in vivo virulence. This increases our knowledge about A. baumannii genome dynamics, and the regulation of capsule production, virulence and resistance.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Elementos de DNA Transponíveis , Humanos , Virulência/genética , Fatores de Virulência/genéticaRESUMO
Inactivating variants as well as a missense variant in the centrosomal CEP78 gene have been identified in autosomal recessive cone-rod dystrophy with hearing loss (CRDHL), a rare syndromic inherited retinal disease distinct from Usher syndrome. Apart from this, a complex structural variant (SV) implicating CEP78 has been reported in CRDHL. Here we aimed to expand the genetic architecture of typical CRDHL by the identification of complex SVs of the CEP78 region and characterization of their underlying mechanisms. Approaches used for the identification of the SVs are shallow whole-genome sequencing (sWGS) combined with quantitative polymerase chain reaction (PCR) and long-range PCR, or ExomeDepth analysis on whole-exome sequencing (WES) data. Targeted or whole-genome nanopore long-read sequencing (LRS) was used to delineate breakpoint junctions at the nucleotide level. For all SVs cases, the effect of the SVs on CEP78 expression was assessed using quantitative PCR on patient-derived RNA. Apart from two novel canonical CEP78 splice variants and a frameshifting single-nucleotide variant (SNV), two SVs affecting CEP78 were identified in three unrelated individuals with CRDHL: a heterozygous total gene deletion of 235 kb and a partial gene deletion of 15 kb in a heterozygous and homozygous state, respectively. Assessment of the molecular consequences of the SVs on patient's materials displayed a loss-of-function effect. Delineation and characterization of the 15-kb deletion using targeted LRS revealed the previously described complex CEP78 SV, suggestive of a recurrent genomic rearrangement. A founder haplotype was demonstrated for the latter SV in cases of Belgian and British origin, respectively. The novel 235-kb deletion was delineated using whole-genome LRS. Breakpoint analysis showed microhomology and pointed to a replication-based underlying mechanism. Moreover, data mining of bulk and single-cell human and mouse transcriptional datasets, together with CEP78 immunostaining on human retina, linked the CEP78 expression domain with its phenotypic manifestations. Overall, this study supports that the CEP78 locus is prone to distinct SVs and that SV analysis should be considered in a genetic workup of CRDHL. Finally, it demonstrated the power of sWGS and both targeted and whole-genome LRS in identifying and characterizing complex SVs in patients with ocular diseases.
RESUMO
SUMMARY: Modified nucleotides play a crucial role in gene expression regulation. Here, we describe methplotlib, a tool developed for the visualization of modified nucleotides detected from Oxford Nanopore Technologies sequencing platforms, together with additional scripts for statistical analysis of allele-specific modification within-subjects and differential modification frequency across subjects. AVAILABILITY AND IMPLEMENTATION: The methplotlib command-line tool is written in Python3, is compatible with Linux, Mac OS and the MS Windows 10 Subsystem for Linux and released under the MIT license. The source code can be found at https://github.com/wdecoster/methplotlib and can be installed from PyPI and bioconda. Our repository includes test data, and the tool is continuously tested at travis-ci.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Sequenciamento por Nanoporos , Nanoporos , Humanos , Nucleotídeos , Análise de Sequência de DNA , SoftwareRESUMO
Long-read sequencing has substantial advantages for structural variant discovery and phasing of variants compared to short-read technologies, but the required and optimal read length has not been assessed. In this work, we used long reads simulated from human genomes and evaluated structural variant discovery and variant phasing using current best practice bioinformatics methods. We determined that optimal discovery of structural variants from human genomes can be obtained with reads of minimally 20 kb. Haplotyping variants across genes only reaches its optimum from reads of 100 kb. These findings are important for the design of future long-read sequencing projects.
RESUMO
Technological limitations have hindered the large-scale genetic investigation of tandem repeats in disease. We show that long-read sequencing with a single Oxford Nanopore Technologies PromethION flow cell per individual achieves 30× human genome coverage and enables accurate assessment of tandem repeats including the 10,000-bp Alzheimer's disease-associated ABCA7 VNTR. The Guppy "flip-flop" base caller and tandem-genotypes tandem repeat caller are efficient for large-scale tandem repeat assessment, but base calling and alignment challenges persist. We present NanoSatellite, which analyzes tandem repeats directly on electric current data and improves calling of GC-rich tandem repeats, expanded alleles, and motif interruptions.
Assuntos
Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Sequências de Repetição em Tandem , Transportadores de Cassetes de Ligação de ATP/genética , Algoritmos , Estudos de Viabilidade , Humanos , Repetições MinissatélitesRESUMO
We sequenced the genome of the Yoruban reference individual NA19240 on the long-read sequencing platform Oxford Nanopore PromethION for evaluation and benchmarking of recently published aligners and germline structural variant calling tools, as well as a comparison with the performance of structural variant calling from short-read sequencing data. The structural variant caller Sniffles after NGMLR or minimap2 alignment provides the most accurate results, but additional confidence or sensitivity can be obtained by a combination of multiple variant callers. Sensitive and fast results can be obtained by minimap2 for alignment and a combination of Sniffles and SVIM for variant identification. We describe a scalable workflow for identification, annotation, and characterization of tens of thousands of structural variants from long-read genome sequencing of an individual or population. By discussing the results of this well-characterized reference individual, we provide an approximation of what can be expected in future long-read sequencing studies aiming for structural variant identification.
Assuntos
Variação Genética , Genoma Humano , Análise de Sequência de DNA/instrumentação , Benchmarking , Linhagem Celular Tumoral , Biologia Computacional , HumanosRESUMO
Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal firing as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family significantly linked to 7q36. We identified and validated a chromosomal inversion of ca. 4 Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identified significantly more rare variants-nonsense, frameshift, and missense-in early-onset Alzheimer's disease (EOAD, p value = 0.03, OR = 2.21 95% CI 1.05-4.82) and frontotemporal dementia (FTD, p = 0.006, OR = 2.59, 95% CI 1.28-5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel Kv4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p < 0.001 and p < 0.0001) leading to a loss of protein. Reduced DPP6 and/or Kv4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to cause neuronal hyperexcitability and behavioral alterations in Dpp6-KO mice. Taken together, the results of our genomic, genetic, expression and modeling analyses, provided direct evidence supporting the involvement of DPP6 loss in dementia. We propose that loss of function variants have a higher penetrance and disease impact, whereas the missense variants have a variable risk contribution to disease that can vary from high to low penetrance. Our findings of DPP6, as novel gene in dementia, strengthen the involvement of neuronal hyperexcitability and alteration in the homeostasis of neuronal firing as a disease mechanism to further investigate.
Assuntos
Inversão Cromossômica , Demência/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Mutação , Proteínas do Tecido Nervoso/deficiência , Doenças Neurodegenerativas/genética , Neurônios/fisiologia , Canais de Potássio/deficiência , Potenciais de Ação/fisiologia , Adulto , Idoso , Cromossomos Humanos Par 7/genética , Demência/fisiopatologia , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/fisiologia , Feminino , Genes Dominantes , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Linhagem , Penetrância , Polimorfismo de Nucleotídeo Único , Canais de Potássio/genética , Canais de Potássio/fisiologia , Estabilidade Proteica , Transporte Proteico , Transmissão Sináptica , Sequenciamento Completo do GenomaRESUMO
Genetic variants in or near miRNA genes can have profound effects on miRNA expression and targeting. As user-friendly software for the impact prediction of miRNA variants on a large scale is still lacking, we created a tool called miRVaS. miRVaS automates this prediction by annotating the location of the variant relative to functional regions within the miRNA hairpin (seed, mature, loop, hairpin arm, flanks) and by annotating all predicted structural changes within the miRNA due to the variant. In addition, the tool defines the most important region that is predicted to have structural changes and calculates a conservation score that is indicative of the reliability of the structure prediction. The output is presented in a tab-separated file, which enables fast screening, and in an html file, which allows visual comparison between wild-type and variant structures. All separate images are provided for downstream use. Finally, we tested two different approaches on a small test set of published functionally validated genetic variants for their capacity to predict the impact of variants on miRNA expression.
Assuntos
MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , MicroRNAs/química , Conformação de Ácido NucleicoRESUMO
As regulators of gene expression, microRNAs (miRNAs) are likely to play an important role in the development of disease. In this study we present a large-scale strategy to identify miRNAs with a role in the regulation of neuronal processes. Thereby we found variant rs7861254 located near the MIR204 gene to be significantly associated with schizophrenia. This variant resulted in reduced expression of miR-204 in neuronal-like SH-SY5Y cells. Analysis of the consequences of the altered miR-204 expression on the transcriptome of these cells uncovered a new mode of action for miR-204, being the regulation of noncoding RNAs (ncRNAs), including several miRNAs, such as MIR296. Furthermore, pathway analysis showed downstream effects of miR-204 on neurotransmitter and ion channel related gene sets, potentially mediated by miRNAs regulated through miR-204.
Assuntos
Canais Iônicos/genética , MicroRNAs/genética , Neurotransmissores/genética , Esquizofrenia/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Genômica , Humanos , Mutação , Especificidade de ÓrgãosRESUMO
MicroRNAs (miRNAs) are important regulators of gene expression and like any other gene, their coding sequences are subject to genetic variation. Variants in miRNA genes can have profound effects on miRNA functionality at all levels, including miRNA transcription, maturation, and target specificity, and as such they can also contribute to disease. The impact of variants in miRNA genes is the focus of the present review. To put these effects into context, we first discuss the requirements of miRNA transcripts for maturation. In the last part an overview of available databases and tools and experimental approaches to investigate miRNA variants related to human disease is presented.
RESUMO
Over the last years, genome-wide studies consistently showed an increased burden of rare copy number variants (CNVs) in schizophrenia patients, supporting the "common disease, rare variant" hypothesis in at least a subset of patients. We hypothesize that in families with a high burden of disease, and thus probably a high genetic load influencing disease susceptibility, rare CNVs might be involved in the etiology of schizophrenia. We performed a genome-wide CNV analysis in the index patients of eight families with multiple schizophrenia affected members, and consecutively performed a detailed family analysis for the most relevant CNVs. One index patient showed a DRD5 containing duplication. A second index patient presented with an NRXN1 containing deletion and two adjacent duplications containing MYT1L and SNTG2. Detailed analysis in the subsequent families showed segregation of the identified CNVs. With this study we show the importance of screening high burden families for rare CNVs, which will not only broaden our knowledge concerning the molecular genetic mechanisms involved in schizophrenia but also allow the use of the obtained genetic data to provide better clinical care to these families in general and to non-symptomatic causal CNV carriers in particular.