Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Phys Rev Lett ; 132(22): 225001, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877942

RESUMO

We report on an experimental observation of the streaking of betatron x rays in a curved laser wakefield accelerator. The streaking of the betatron x rays was realized by launching a laser pulse into a plasma with a transverse density gradient. By controlling the plasma density and the density gradient, we realized the steering of the laser driver, electron beam, and betatron x rays simultaneously. Moreover, we observed an energy-angle correlation of the streaked betatron x rays and utilized it in diagnosing the electron acceleration process in a single-shot mode. Our work could also find applications in advanced control of laser beam and particle propagation. More importantly, the angular streaked betatron x ray has an intrinsic spatiotemporal correlation, which makes it a promising tool for single-shot pump-probe applications.

2.
Sci Rep ; 14(1): 6001, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472232

RESUMO

The rapid progress that plasma wakefield accelerators are experiencing is now posing the question as to whether they could be included in the design of the next generation of high-energy electron-positron colliders. However, the typical structure of the accelerating wakefields presents challenging complications for positron acceleration. Despite seminal proof-of-principle experiments and theoretical proposals, experimental research in plasma-based acceleration of positrons is currently limited by the scarcity of positron beams suitable to seed a plasma accelerator. Here, we report on the first experimental demonstration of a laser-driven source of ultra-relativistic positrons with sufficient spectral and spatial quality to be injected in a plasma accelerator. Our results indicate, in agreement with numerical simulations, selection and transport of positron beamlets containing N e + ≥ 10 5 positrons in a 5% bandwidth around 600 MeV, with femtosecond-scale duration and micron-scale normalised emittance. Particle-in-cell simulations show that positron beams of this kind can be guided and accelerated in a laser-driven plasma accelerator, with favourable scalings to further increase overall charge and energy using PW-scale lasers. The results presented here demonstrate the possibility of performing experimental studies of positron acceleration in a laser-driven wakefield accelerator.

3.
Phys Rev Lett ; 129(24): 244801, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563240

RESUMO

We report on a novel, noninvasive method applying Thomson scattering to measure the evolution of the electron beam energy inside a laser-plasma accelerator with high spatial resolution. The determination of the local electron energy enabled the in-situ detection of the acting acceleration fields without altering the final beam state. In this Letter we demonstrate that the accelerating fields evolve from (265±119) GV/m to (9±4) GV/m in a plasma density ramp. The presented data show excellent agreement with particle-in-cell simulations. This method provides new possibilities for detecting the dynamics of plasma-based accelerators and their optimization.

4.
Phys Med Biol ; 67(8)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35263730

RESUMO

Objective. In the irradiation of living tissue, the fundamental physical processes involved in radical production typically occur on a timescale of a few femtoseconds. A detailed understanding of these phenomena has thus far been limited by the relatively long duration of the radiation sources employed, extending well beyond the timescales for radical generation and evolution.Approach. Here, we propose a femtosecond-scale photon source, based on inverse Compton scattering of laser-plasma accelerated electron beams in the field of a second scattering laser pulse.Main results. Detailed numerical modelling indicates that existing laser facilities can provide ultra-short and high-flux MeV-scale photon beams, able to deposit doses tuneable from a fraction of Gy up to a few Gy per pulse, resulting in dose rates exceeding 1013Gy/s.Significance. We envisage that such a source will represent a unique tool for time-resolved radiobiological experiments, with the prospect of further advancing radio-therapeutic techniques.


Assuntos
Elétrons , Aceleradores de Partículas , Lasers , Fótons/uso terapêutico , Radiobiologia
5.
Nat Commun ; 11(1): 6355, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311487

RESUMO

Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.

7.
Sci Rep ; 9(1): 3249, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824838

RESUMO

Laser-wakefield accelerators (LWFAs) are high acceleration-gradient plasma-based particle accelerators capable of producing ultra-relativistic electron beams. Within the strong focusing fields of the wakefield, accelerated electrons undergo betatron oscillations, emitting a bright pulse of X-rays with a micrometer-scale source size that may be used for imaging applications. Non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials can provide insight into their processing, structure, and performance. To demonstrate the imaging capability of X-rays from an LWFA we have examined an irregular eutectic in the aluminum-silicon (Al-Si) system. The lamellar spacing of the Al-Si eutectic microstructure is on the order of a few micrometers, thus requiring high spatial resolution. We present comparisons between the sharpness and spatial resolution in phase contrast images of this eutectic alloy obtained via X-ray phase contrast imaging at the Swiss Light Source (SLS) synchrotron and X-ray projection microscopy via an LWFA source. An upper bound on the resolving power of 2.7 ± 0.3 µm of the LWFA source in this experiment was measured. These results indicate that betatron X-rays from laser wakefield acceleration can provide an alternative to conventional synchrotron sources for high resolution imaging of eutectics and, more broadly, complex microstructures.

8.
Phys Rev Lett ; 122(3): 034801, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30735413

RESUMO

A tunable plasma-based energy dechirper has been developed at FLASHForward to remove the correlated energy spread of a 681 MeV electron bunch. Through the interaction of the bunch with wakefields excited in plasma the projected energy spread was reduced from a FWHM of 1.31% to 0.33% without reducing the stability of the incoming beam. The experimental results for variable plasma density are in good agreement with analytic predictions and three-dimensional simulations. The proof-of-principle dechirping strength of 1.8 GeV/mm/m significantly exceeds those demonstrated for competing state-of-the-art techniques and may be key to future plasma wakefield-based free-electron lasers and high energy physics facilities, where large intrinsic chirps need to be removed.

9.
Phys Rev Lett ; 123(25): 254801, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31922780

RESUMO

Single-shot absorption measurements have been performed using the multi-keV x rays generated by a laser-wakefield accelerator. A 200 TW laser was used to drive a laser-wakefield accelerator in a mode which produced broadband electron beams with a maximum energy above 1 GeV and a broad divergence of ≈15 mrad FWHM. Betatron oscillations of these electrons generated 1.2±0.2×10^{6} photons/eV in the 5 keV region, with a signal-to-noise ratio of approximately 300∶1. This was sufficient to allow high-resolution x-ray absorption near-edge structure measurements at the K edge of a titanium sample in a single shot. We demonstrate that this source is capable of single-shot, simultaneous measurements of both the electron and ion distributions in matter heated to eV temperatures by comparison with density functional theory simulations. The unique combination of a high-flux, large bandwidth, few femtosecond duration x-ray pulse synchronized to a high-power laser will enable key advances in the study of ultrafast energetic processes such as electron-ion equilibration.

10.
Phys Rev Lett ; 120(25): 254801, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29979081

RESUMO

We report on the depletion and power amplification of the driving laser pulse in a strongly driven laser wakefield accelerator. Simultaneous measurement of the transmitted pulse energy and temporal shape indicate an increase in peak power from 187±11 TW to a maximum of 318±12 TW after 13 mm of propagation in a plasma density of 0.9×10^{18} cm^{-3}. The power amplification is correlated with the injection and acceleration of electrons in the nonlinear wakefield. This process is modeled by including a localized redshift and subsequent group delay dispersion at the laser pulse front.

11.
Phys Rev Lett ; 120(7): 074801, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542949

RESUMO

We report on the experimental studies of laser driven ion acceleration from a double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer-thin diamondlike carbon foil. A significant enhancement of proton maximum energies from 12 to ∼30 MeV is observed when a relativistic laser pulse impinges on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.

12.
J Anim Sci ; 94(6): 2637-47, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27285939

RESUMO

Vitamin D (D3) supplementation may be used to increase tenderness in beef from cattle fed zilpaterol hydrochloride (ZH). The study was arranged as a 2 × 2 factorial with fixed effects of ZH (no ZH or ZH fed at 8.3 mg/kg DM for 20 d with a 3-d withdrawal) and D3 (no D3 or 500,000 IU D3·steer·d for 10 d prior to harvest). Cattle ( = 466) were harvested in 2 blocks on the basis of BW with subsequent collection of carcass data. Full loins and inside rounds ( = 144 of each subprimal) were collected for fabrication of 5 steaks from the longissimus lumborum (LL), gluteus medius (GM), and semimembranosus (SM), which were aged for 7, 14, 21, 28, or 35 d. Warner-Bratzler shear force (WBSF) was used to evaluate mechanical tenderness of LL, GM, and SM steaks at all aging periods. Slice shear force (SSF) analysis was conducted on only 14- and 21-d LL steaks. No interactions ( > 0.05) between ZH and D3 occurred throughout the entire study. Supplementing ZH resulted in increased HCW ( < 0.01), larger LM area ( < 0.01), and improved calculated yield grades ( < 0.01) with decreases in fat thickness ( = 0.02) and marbling scores ( = 0.05). Supplementation with D3 increased calculated yield grade ( < 0.01) and decreased ( = 0.01) rib eye area. Feeding ZH increased ( ≤ 0.05) WBSF of LL steaks at each postmortem age interval, whereas D3 had no effect ( > 0.05) on WBSF or SSF of LL steaks. Like for WBSF, ZH supplementation increased SSF values at 14 and 21 d postmortem ( < 0.01) compared with those for non-ZH steaks. There was an interaction between ZH and postmortem age ( < 0.01) for WBSF of LL steaks. At 7 d LL steaks from ZH steers sheared over 0.6 kg greater than non-ZH steaks; however, by 21 d this difference was reduced to an average of 0.2 kg. Differences in distribution between LL steaks below 3.0 kg from non-ZH and ZH-fed cattle were also notable ( ≤ 0.05) through 21 d of aging. At 35 d postmortem a high proportion of LL steaks (68.5%) from ZH-fed steers required less than 3.0 kg to shear. Supplementation with ZH and D3 had no impact ( > 0.05) on WBSF values of GM steaks. Feeding ZH did not alter WBSF of SM steaks, but at 28 d D3 increased ( = 0.04) WBSF values. Shear force in ZH steaks was not effectively reduced by feeding D3 for 10 d to steers prior to harvest. Aging, however, was an effective method of reducing initially greater shear force values in LL steaks and, to a lesser degree, GM steaks from ZH-fed cattle.


Assuntos
Ração Animal , Suplementos Nutricionais , Manipulação de Alimentos/métodos , Qualidade dos Alimentos , Carne Vermelha/análise , Compostos de Trimetilsilil , Vitamina D , Animais , Bovinos , Músculo Esquelético/fisiologia , Resistência ao Cisalhamento
13.
Phys Rev Lett ; 115(6): 064801, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26296119

RESUMO

Ultraintense laser pulses with a few-cycle rising edge are ideally suited to accelerating ions from ultrathin foils, and achieving such pulses in practice represents a formidable challenge. We show that such pulses can be obtained using sufficiently strong and well-controlled relativistic nonlinearities in spatially well-defined near-critical-density plasmas. The resulting ultraintense pulses with an extremely steep rising edge give rise to significantly enhanced carbon ion energies consistent with a transition to radiation pressure acceleration.

14.
Rev Sci Instrum ; 86(12): 123302, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724017

RESUMO

The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

15.
Phys Rev Lett ; 113(23): 235002, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25526132

RESUMO

Double-foil targets separated by a low density plasma and irradiated by a petawatt-class laser are shown to be a copious source of coherent broadband radiation. Simulations show that a dense sheet of relativistic electrons is formed during the interaction of the laser with the tenuous plasma between the two foils. The coherent motion of the electron sheet as it transits the second foil results in strong broadband emission in the extreme ultraviolet, consistent with our experimental observations.

16.
Rev Sci Instrum ; 85(3): 033304, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689572

RESUMO

A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection.

17.
Phys Rev Lett ; 112(12): 123902, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724650

RESUMO

The polarization dependence of laser-driven coherent synchrotron emission transmitted through thin foils is investigated experimentally. The harmonic generation process is seen to be almost completely suppressed for circular polarization opening up the possibility of producing isolated attosecond pulses via polarization gating. Particle-in-cell simulations suggest that current laser pulses are capable of generating isolated attosecond pulses with high pulse energies.

18.
Philos Trans A Math Phys Eng Sci ; 372(2010): 20130032, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24470414

RESUMO

Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10-100 keV range.

19.
Rev Sci Instrum ; 84(8): 083505, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24007063

RESUMO

A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code MCNPX [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.

20.
J Anim Sci ; 90(9): 3301-11, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22871933

RESUMO

British × Continental heifers (n = 3,382; initial BW = 307 kg) were serially slaughtered to determine if increasing days on the finishing diet (DOF) mitigates negative consequences of zilpaterol HCl (ZH) on quality grade and tenderness of beef. A 2 × 3 factorial arrangement of treatments in a completely randomized block design (36 pens; 6 pens/treatment) was used. Zilpaterol HCl (8.33 mg/kg DM) was fed 0 and 20 to 22 d before slaughter plus a 3 to 5 d withdrawal to heifers spending 127, 148, and 167 DOF. Feedlot and carcass performance data were analyzed with pen as the experimental unit. Three hundred sixty carcasses (60 carcasses/treatment) were randomly subsampled, and strip loin steaks were aged for 7, 14, and 21 d for assessment of Warner-Bratzler shear force (WBSF) and slice shear force (SSF) with carcass serving as the experimental unit for analysis. No relevant ZH × DOF interactions were detected (P > 0.05). Feeding ZH during the treatment period increased ADG by 9.5%, G:F by 12.5%, carcass ADG by 33.6%, carcass G:F by 35.9%, carcass ADG:live ADG by 15.6%, HCW by 3.2% (345 vs. 356 kg), dressing percent by 1.5%, and LM area by 6.5% and decreased 12th-rib fat by 5.2% and yield grade (YG) by 0.27 units (P < 0.01). Feeding ZH tended to decrease marbling score (437 vs. 442 units; P = 0.10) and increased WBSF at 7 (4.25 vs. 3.47 kg; P < 0.01), 14 (3.57 vs. 3.05 kg; P < 0.01), and 21 d (3.50 vs. 3.03 kg; P < 0.01). Feeding ZH decreased empty body fat percentage (EBF; 29.7% vs. 30.3%; P < 0.01) and increased 28% EBF adjusted final BW (473.4 vs. 449.8 kg; P < 0.01). Analysis of interactive means indicated that the ZH × 148 DOF group had a similar percentage of USDA Prime, Premium Choice, Low Choice, and YG 1, 2, 3, 4, and 5 carcasses (P > 0.10) and decreased percentage of Select (30.4 vs. 36.6%; P = 0.03) and Standard (0.2 vs. 0.9%; P = 0.05) carcasses compared with the control × 127 DOF group. As a result of ZH shifting body composition, extending the DOF of beef heifers is an effective feeding strategy to equalize carcass grade distributions. This can be accomplished along with sustaining the ZH mediated advantages in feedlot and carcass weight gain.


Assuntos
Adrenérgicos/farmacologia , Ração Animal/análise , Dieta/veterinária , Carne/normas , Compostos de Trimetilsilil/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Composição Corporal , Bovinos , Esquema de Medicação , Feminino , Abrigo para Animais , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA