Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sci Total Environ ; 803: 150083, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525679

RESUMO

Understanding the spatio-temporal heterogeneous effects of socioeconomic and meteorological factors on CO2 emissions from combinations of different district heating systems with "Coal-to-Gas" transition can contribute to the development of future low-carbon energy systems that are efficient and effective. This work downscales city-level CO2 emissions to a 3 × 3 km2 gridded level in northern China during 2012 to 2018. By employing the Geographically and Temporally Weighted Regression (GTWR) model, nighttime light (NTL) data are adopted as a proxy of the level of urbanization, and the Temperature-Humidity-Wind (THW) Index is used as a proxy of meteorological factors in the downscaling model. The results show that, for more than 85% of the cities, urbanization significantly enhances the CO2 emissions of district heating systems, while the THW Index shows negative impacts on CO2 emissions. Significant spatial and temporal heterogeneity exists. The grids with the highest CO2 emissions from coal-fired boilers (grids with annual variation >0.59 Gg CO2/year) are mainly located in nonurban areas of the two megacities Beijing and Tianjin and also in the capital cities of each province. Urbanization has larger effects on the CO2 emissions of natural gas-fired boilers than of coal-fired boilers and combined heat and power (CHP). The average growth rate of CO2 emissions of gas-fired boilers in the urban areas of the study regions was approximately 4.7 times that of nonurban areas. The spatio-temporal heterogeneous impacts of urbanization on CO2 emissions should therefore be considered in future discussions of clean heating policies and climate response strategies.


Assuntos
Dióxido de Carbono , Calefação , Dióxido de Carbono/análise , China , Carvão Mineral , Urbanização
2.
Earths Future ; 9(4): e2020EF001665, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33869651

RESUMO

Observing the spatial heterogeneities of NO2 air pollution is an important first step in quantifying NOX emissions and exposures. This study investigates the capabilities of the Tropospheric Monitoring Instrument (TROPOMI) in observing the spatial and temporal patterns of NO2 pollution in the continental United States. The unprecedented sensitivity of the sensor can differentiate the fine-scale spatial heterogeneities in urban areas, such as emissions related to airport/shipping operations and high traffic, and the relatively small emission sources in rural areas, such as power plants and mining operations. We then examine NO2 columns by day-of-the-week and find that Saturday and Sunday concentrations are 16% and 24% lower respectively, than during weekdays. We also analyze the correlation of daily maximum 2-m temperatures and NO2 column amounts and find that NO2 is larger on the hottest days (>32°C) as compared to warm days (26°C-32°C), which is in contrast to a general decrease in NO2 with increasing temperature at moderate temperatures. Finally, we demonstrate that a linear regression fit of 2019 annual TROPOMI NO2 data to annual surface-level concentrations yields relatively strong correlation (R 2 = 0.66). These new developments make TROPOMI NO2 satellite data advantageous for policymakers and public health officials, who request information at high spatial resolution and short timescales, in order to assess, devise, and evaluate regulations.

3.
Proc Natl Acad Sci U S A ; 117(49): 31018-31025, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229579

RESUMO

The Chinese "coal-to-gas" and "coal-to-electricity" strategies aim at reducing dispersed coal consumption and related air pollution by promoting the use of clean and low-carbon fuels in northern China. Here, we show that on top of meteorological influences, the effective emission mitigation measures achieved an average decrease of fine particulate matter (PM2.5) concentrations of ∼14% in Beijing and surrounding areas (the "2+26" pilot cities) in winter 2017 compared to the same period of 2016, where the dispersed coal control measures contributed ∼60% of the total PM2.5 reductions. However, the localized air quality improvement was accompanied by a contemporaneous ∼15% upsurge of PM2.5 concentrations over large areas in southern China. We find that the pollution transfer that resulted from a shift in emissions was of a high likelihood caused by a natural gas shortage in the south due to the coal-to-gas transition in the north. The overall shortage of natural gas greatly jeopardized the air quality benefits of the coal-to-gas strategy in winter 2017 and reflects structural challenges and potential threats in China's clean-energy transition.


Assuntos
Poluição do Ar/análise , Carvão Mineral/análise , Gás Natural/análise , Estações do Ano , China , Cidades , Política Ambiental , Calefação , Material Particulado/análise
4.
Geophys Res Lett ; 47(17): e2020GL089269, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32904906

RESUMO

TROPOMI satellite data show substantial drops in nitrogen dioxide (NO2) during COVID-19 physical distancing. To attribute NO2 changes to NO x emissions changes over short timescales, one must account for meteorology. We find that meteorological patterns were especially favorable for low NO2 in much of the United States in spring 2020, complicating comparisons with spring 2019. Meteorological variations between years can cause column NO2 differences of ~15% over monthly timescales. After accounting for solar angle and meteorological considerations, we calculate that NO2 drops ranged between 9.2% and 43.4% among 20 cities in North America, with a median of 21.6%. Of the studied cities, largest NO2 drops (>30%) were in San Jose, Los Angeles, and Toronto, and smallest drops (<12%) were in Miami, Minneapolis, and Dallas. These normalized NO2 changes can be used to highlight locations with greater activity changes and better understand the sources contributing to adverse air quality in each city.

5.
Environ Sci Technol ; 53(21): 12594-12601, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31601103

RESUMO

The TROPOspheric Monitoring Instrument (TROPOMI) is used to derive top-down NOX emissions for two large power plants and three megacities in North America. We first re-process the vertical column NO2 with an improved air mass factor to correct for a known systematic low bias in the operational retrieval near urban centers. For the two power plants, top-down NOX emissions agree to within 10% of the emissions reported by the power plants. We then derive top-down NOX emissions rates for New York City, Chicago, and Toronto, and compare them to projected bottom-up emissions inventories. In this analysis of 2018 NOX emissions, we find a +22% overestimate for New York City, a -21% underestimate in Toronto, and good agreement in Chicago in the projected bottom-up inventories when compared to the top-down emissions. Top-down NOX emissions also capture intraseasonal variability, such as the weekday versus weekend effect (emissions are +45% larger on weekdays versus weekends in Chicago). Finally, we demonstrate the enhanced capabilities of TROPOMI, which allow us to derive a NOX emissions rate for Chicago using a single overpass on July 7, 2018. The large signal-to-noise ratio of TROPOMI is well-suited for estimating NOX emissions from relatively small sources and for sub-seasonal timeframes.


Assuntos
Poluentes Atmosféricos , Chicago , Cidades , Monitoramento Ambiental , Cidade de Nova Iorque , América do Norte , Centrais Elétricas , Estados Unidos
6.
Sci Total Environ ; 695: 133805, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419680

RESUMO

Fossil-fuel CO2 emissions and their trends in eight U.S. megacities during 2006-2017 are inferred by combining satellite-derived NOX emissions with bottom-up city-specific NOX-to-CO2 emission ratios. A statistical model is fit to a collection NO2 plumes observed from the Ozone Monitoring Instrument (OMI), and is used to calculate top-down NOX emissions. Decreases in OMI-derived NOX emissions are observed across the eight cities from 2006 to 2017 (-17% in Miami to -58% in Los Angeles), and are generally consistent with long-term trends of bottom-up inventories (-25% in Miami to -49% in Los Angeles), but there are some interannual discrepancies. City-specific NOX-to-CO2 emission ratios, used to calculate inferred CO2, are estimated through annual bottom-up inventories of NOX and CO2 emissions disaggregated to 1 × 1 km2 resolution. Over the study period, NOX-to-CO2 emission ratios have decreased by ~40% nationwide (-24% to -51% for our studied cities), which is attributed to a faster reduction in NOX when compared to CO2 due to policy regulations and fuel type shifts. Combining top-down NOX emissions and bottom-up NOX-to-CO2 emission ratios, annual fossil-fuel CO2 emissions are derived. Inferred OMI-based top-down CO2 emissions trends vary between +7% in Dallas to -31% in Phoenix. For 2017, we report annual fossil-fuel CO2 emissions to be: Los Angeles 113 ±â€¯49 Tg/yr; New York City 144 ±â€¯62 Tg/yr; and Chicago 55 ±â€¯24 Tg/yr. A study in the Los Angeles area, using independent methods, reported a 2013-2016 average CO2 emissions rate of 104 Tg/yr and 120 Tg/yr, which suggests that the CO2 emissions from our method are in good agreement with other studies' top-down estimates. We anticipate future remote sensing instruments - with better spatial and temporal resolution - will better constrain the NOX-to-CO2 ratio and reduce the uncertainty in our method.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31035528

RESUMO

China's rapid urbanization and industrialization have affected the spatiotemporal patterns of nitrogen dioxide (NO2) pollution, which has led to greater environmental pressures. In order to mitigate the environmental pressures caused by NO2 pollution, it is of vital importance to investigate the influencing factors. We first obtained data for NO2 pollution at the city level using satellite observation techniques and analyzed its spatial distribution. Next, we introduced a theoretical framework, an extended stochastic impacts by regression on population, affluence, and technology (STIRPAT) model, to quantify the relationship between NO2 pollution and its contributing natural and socio-economic factors. The results are as follows. Cities with high NO2 pollution are mainly concentrated in the North China Plain. On the contrary, southwestern cities are characterized by low NO2 pollution. In addition, we find that population, per capita gross domestic product, the share of the secondary industry, ambient air pressures, total nighttime light data, and urban road area have a positive impact on NO2 pollution. In contrast, increases in the normalized difference vegetation index (NDVI), relative humidity, temperature, and wind speed may reduce NO2 pollution. These empirical results should help the government to effectively and efficiently implement further emission reductions and energy saving policies in Chinese cities in a bid to mitigate the environmental pressures.


Assuntos
Poluentes Atmosféricos/análise , Modelos Teóricos , Dióxido de Nitrogênio/análise , Poluição do Ar , China , Cidades , Comunicações Via Satélite , Urbanização , Tempo (Meteorologia)
8.
Sci Total Environ ; 653: 1364-1376, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30759576

RESUMO

A novel back-trajectory approach was adopted to determine the origins of black carbon (BC) and carbon monoxide (CO) transported to Beijing, Tianjin and Hebei. Results showed that the transport efficiency was controlled mainly by mid-latitude westerlies in winter, the South Asian monsoon in summer and prevailing westerly and northwesterly winds in spring and autumn. Hebei was identified as the most important source region of both BC (respectively accounting for 55% and 49%) and CO (39% and 38%) transported to Beijing and Tianjin. Inner Mongolia contributed more to the effective emission intensity (EEI) in winter than in summer for both BC and CO transported to Beijing and Tianjin. Shandong was responsible for higher EEI in summer than in winter. The six provinces making the greatest contributions to BC transported to Hebei were Shandong (19%), Shanxi (19%), Inner Mongolia (17%), Beijing (11%), Henan (11%), and Tianjin (10%), whereas those making the greatest contributions to CO transported to Hebei were Shandong (20%), Inner Mongolia (10%), Tianjin (9%), Henan (9%), Shanxi (9%), and Beijing (8%). In summary, Hebei, Inner Mongolia, Shandong, Tianjin and Shanxi were determined as the dominant source regions of not only BC but also CO transported to Beijing. Hebei, Shandong, Beijing, Inner Mongolia, Henan, Liaoning and Shanxi were relatively important source regions for Tianjin. Shandong, Shanxi, Inner Mongolia, Beijing, Henan, Tianjin, Liaoning, Jiangsu and Anhui were the main source regions for Hebei. Residential and industrial sectors were the dominant sectors for BC and CO transported to the receptors, respectively. These results are consistent with the results of previous studies. Finally, comparing the observed ΔBC/ΔCO ratio with the enhancement ratio of the EEI of BC with that of CO (ΔEEIBC/ΔEEICO) at Miyun site, we further confirmed that the EEI can be used to represent the amounts of BC and CO reaching receptors.

9.
Sci Total Environ ; 615: 131-140, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28964988

RESUMO

Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8-98.9, 80% C.I.) Gg (gigagrams, 109g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01Ggyr-1 in 1850 to 1Ggyr-1 in 2010. Geographically, Asia and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2-68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6-30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers.

10.
Environ Sci Technol ; 51(11): 5969-5977, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28448134

RESUMO

We estimate that a cumulative total of 1540 (1060-2800) Gg (gigagrams, 109 grams or thousand tonnes) of mercury (Hg) have been released by human activities up to 2010, 73% of which was released after 1850. Of this liberated Hg, 470 Gg were emitted directly into the atmosphere, and 74% of the air emissions were elemental Hg. Cumulatively, about 1070 Gg were released to land and water bodies. Though annual releases of Hg have been relatively stable since 1880 at 8 ± 2 Gg, except for wartime, the distributions of those releases among source types, world regions, and environmental media have changed dramatically. Production of Hg accounts for 27% of cumulative Hg releases to the environment, followed by silver production (24%) and chemicals manufacturing (12%). North America (30%), Europe (27%), and Asia (16%) have experienced the largest releases. Biogeochemical modeling shows a 3.2-fold increase in the atmospheric burden relative to 1850 and a contemporary atmospheric reservoir of 4.57 Gg, both of which agree well with observational constraints. We find that approximately 40% (390 Gg) of the Hg discarded to land and water must be sequestered at contaminated sites to maintain consistency with recent declines in atmospheric Hg concentrations.


Assuntos
Poluentes Atmosféricos , Atividades Humanas , Mercúrio , Ásia , Atmosfera , Monitoramento Ambiental , Europa (Continente) , Humanos , América do Norte
11.
Nature ; 543(7647): 705-709, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28358094

RESUMO

Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/estatística & dados numéricos , Comércio/estatística & dados numéricos , Internacionalidade , Mortalidade Prematura , Material Particulado/efeitos adversos , Poluentes Atmosféricos/análise , Atmosfera/química , China/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Europa (Continente)/epidemiologia , Saúde Global , Humanos , Material Particulado/análise , Saúde Pública , Estados Unidos/epidemiologia , Vento
12.
Sci Rep ; 6: 35912, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27786278

RESUMO

China's twelfth Five-Year Plan included pollution control measures with a goal of reducing national emissions of nitrogen oxides (NOx) by 10% by 2015 compared with 2010. Multiple linear regression analysis was used on 11-year time series of all nitrogen dioxide (NO2) pixels from the Ozone Monitoring Instrument (OMI) over 18 NO2 hotspots in China. The regression analysis accounted for variations in meteorology, pixel resolution, seasonal effects, weekday variability and year-to-year variability. The NO2 trends suggested that there was an increase in NO2 columns in most areas from 2005 to around 2011 which was followed by a strong decrease continuing through 2015. The satellite results were in good agreement with the annual official NOx emission inventories which were available up until 2014. This shows the value of evaluating trends in emission inventories using satellite retrievals. It further shows that recent control strategies were effective in reducing emissions and that recent economic transformations in China may be having an effect on NO2 columns. Satellite information for 2015 suggests that emissions have continued to decrease since the latest inventories available and have surpassed the goals of the twelfth Five-Year Plan.

13.
Environ Sci Technol ; 49(9): 5326-35, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25851589

RESUMO

We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and use the GEOS-Chem model to calculate global mercury deposition. Where technology requirements in the Convention are flexibly defined, under a global energy and development scenario that relies heavily on coal, we project ∼90 and 150 Mg·y(-1) of avoided power sector emissions for China and India, respectively, in 2050, compared to a scenario in which only current technologies are used. Benefits of this avoided emissions growth are primarily captured regionally, with projected changes in annual average gross deposition over China and India ∼2 and 13 µg·m(-2) lower, respectively, than the current technology case. Stricter, but technologically feasible, mercury control requirements in both countries could lead to a combined additional 170 Mg·y(-1) avoided emissions. Assuming only current technologies but a global transition away from coal avoids 6% and 36% more emissions than this strict technology scenario under heavy coal use for China and India, respectively.


Assuntos
Poluentes Atmosféricos/análise , Carvão Mineral/análise , Mercúrio/análise , Centrais Elétricas , China , Eletricidade , Índia , Internacionalidade , Japão , Modelos Teóricos , Estados Unidos
14.
Environ Sci Technol ; 49(8): 4868-77, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25811601

RESUMO

Organic aerosols (OAs) in the atmosphere affect Earth's energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called "brown carbon" (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (kOA, the fundamental optical parameter determining the particle's absorptivity) and their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based kOA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated kOA values of sectoral and total POA emissions are presented. Results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ∼27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption.


Assuntos
Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/química , Carbono/química , Atmosfera/química , Biocombustíveis , Biomassa , Clima , Luz , Modelos Teóricos , Refratometria , Fuligem/química
15.
Environ Sci Technol ; 48(24): 14455-63, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25393452

RESUMO

This work evaluates the effectiveness of on-road primary particulate matter emission reductions that can be achieved by long-term vehicle scrappage and retrofit measures on regional and global levels. Scenario analysis shows that scrappage can provide significant emission reductions as soon as the measures begin, whereas retrofit provides greater emission reductions in later years, when more advanced technologies become available in most regions. Reductions are compared with a baseline that already accounts for implementation of clean vehicle standards. The greatest global emission reductions from a scrappage program occur 5 to 10 years after its introduction and can reach as much as 70%. The greatest reductions with retrofit occur around 2030 and range from 16-31%. Monte Carlo simulations are used to evaluate how uncertainties in the composition of the vehicle fleet affect predicted reductions. Scrappage and retrofit reduce global emissions by 22-60% and 15-31%, respectively, within 95% confidence intervals, under a midrange scenario in the year 2030. The simulations provide guidance about which strategies are most effective for specific regions. Retrofit is preferable for high-income regions. For regions where early emission standards are in place, scrappage is suggested, followed by retrofit after more advanced emission standards are introduced. The early implementation of advanced emission standards is recommended for Western and Eastern Africa.


Assuntos
Poluição do Ar/prevenção & controle , Veículos Automotores , Poluentes Atmosféricos/análise , Simulação por Computador , Modelos Teóricos , Método de Monte Carlo , Material Particulado/análise , Emissões de Veículos/análise
16.
Environ Sci Technol ; 48(22): 13060-8, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25343705

RESUMO

Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 µg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 µg/m(3)), and mineral dust (11.1 ± 7.9 µg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 µg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 µg/m(3)) could be almost as large as from fossil fuel combustion sources (17 µg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.


Assuntos
Exposição Ambiental/análise , Material Particulado/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Modelos Teóricos , América do Norte , Fenômenos Ópticos , Tamanho da Partícula
18.
Environ Sci Technol ; 48(17): 10242-50, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25127072

RESUMO

The intentional use of mercury (Hg) in products and processes ("commercial Hg") has contributed a large and previously unquantified anthropogenic source of Hg to the global environment over the industrial era, with major implications for Hg accumulation in environmental reservoirs. We present a global inventory of commercial Hg uses and releases to the atmosphere, water, soil, and landfills from 1850 to 2010. Previous inventories of anthropogenic Hg releases have focused almost exclusively on atmospheric emissions from "byproduct" sectors (e.g., fossil fuel combustion). Cumulative anthropogenic atmospheric Hg emissions since 1850 have recently been estimated at 215 Gg (only including commercial Hg releases from chlor-alkali production, waste incineration, and mining). We find that other commercial Hg uses and nonatmospheric releases from chlor-alkali and mining result in an additional 540 Gg of Hg released to the global environment since 1850 (air: 20%; water: 30%; soil: 30%; landfills: 20%). Some of this release has been sequestered in landfills and benthic sediments, but 310 Gg actively cycles among geochemical reservoirs and contributes to elevated present-day environmental Hg concentrations. Commercial Hg use peaked in 1970 and has declined sharply since. We use our inventory of historical environmental releases to force a global biogeochemical model that includes new estimates of the global burial in ocean margin sediments. Accounting for commercial Hg releases improves model consistency with observed atmospheric concentrations and associated historical trends.


Assuntos
Poluentes Ambientais/análise , Internacionalidade , Mercúrio/análise , Atmosfera/química , Simulação por Computador , Modelos Teóricos
19.
Environ Sci Technol ; 48(13): 7660-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24905585

RESUMO

Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p < 0.05) to 17 (p < 0.1) of the 28 pairwise comparisons between eight global regions are statistically distinguishable on the basis of δ(202)Hg, Δ(199)Hg or both, highlighting the potential application of Hg isotope signatures to coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).


Assuntos
Poluentes Atmosféricos/química , Carvão Mineral/análise , Internacionalidade , Mercúrio/análise , Mercúrio/química , Fracionamento Químico , China , Florida , Isótopos de Mercúrio/análise , Peso Molecular , Centrais Elétricas , Rios
20.
Proc Natl Acad Sci U S A ; 111(5): 1736-41, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449863

RESUMO

China is the world's largest emitter of anthropogenic air pollutants, and measurable amounts of Chinese pollution are transported via the atmosphere to other countries, including the United States. However, a large fraction of Chinese emissions is due to manufacture of goods for foreign consumption. Here, we analyze the impacts of trade-related Chinese air pollutant emissions on the global atmospheric environment, linking an economic-emission analysis and atmospheric chemical transport modeling. We find that in 2006, 36% of anthropogenic sulfur dioxide, 27% of nitrogen oxides, 22% of carbon monoxide, and 17% of black carbon emitted in China were associated with production of goods for export. For each of these pollutants, about 21% of export-related Chinese emissions were attributed to China-to-US export. Atmospheric modeling shows that transport of the export-related Chinese pollution contributed 3-10% of annual mean surface sulfate concentrations and 0.5-1.5% of ozone over the western United States in 2006. This Chinese pollution also resulted in one extra day or more of noncompliance with the US ozone standard in 2006 over the Los Angeles area and many regions in the eastern United States. On a daily basis, the export-related Chinese pollution contributed, at a maximum, 12-24% of sulfate concentrations over the western United States. As the United States outsourced manufacturing to China, sulfate pollution in 2006 increased in the western United States but decreased in the eastern United States, reflecting the competing effect between enhanced transport of Chinese pollution and reduced US emissions. Our findings are relevant to international efforts to reduce transboundary air pollution.


Assuntos
Poluição do Ar/análise , Comércio , Internacionalidade , Poluentes Atmosféricos/análise , China , Simulação por Computador , Geografia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA