Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life (Basel) ; 13(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36676097

RESUMO

Phosphorylation of beta-amyloid peptide (Aß) at the Ser8 residue affects its neurotoxicity, metal-dependent oligomerisation, amyloidogenicity, and other pathogenic properties. Phosphorylated Aß (pS8-Aß) was detected in vivo in AD model mice and in the brains of patients with AD. However, the pS8-Aß production and the regulation of its levels have not been previously studied in detail. In this paper, immunochemical methods together with radioactive labelling were used to study the Aß phosphorylation by intracellular and surface protein kinases of HEK293 cells and brain endothelial cells (bEnd.3). It was found that HEK293 robustly phosphorylated Aß, likely with contribution from casein kinase 2 (CK2), whereas in bEnd.3, the activity of Aß phosphorylation was relatively low. Further, the study showed that both HEK293 and bEnd.3 could dephosphorylate pS8-Aß, mainly due to the activity of protein phosphatases PP1 and PP2A. The Aß dephosphorylation efficiency in bEnd.3 was three times higher than in HEK293, which correlated with the reduced abundance of pS8-Aß in vascular amyloid deposits of patients with AD compared to senile plaques. These data suggest an important role of CK2, PP1, and PP2A as regulators of Aß phosphorylation, and point to the involvement of the blood-brain barrier in the control of Aß modification levels.

2.
Cells ; 11(17)2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36078160

RESUMO

Beta-amyloid (Aß) has a dual role, both as an important factor in the pathology of Alzheimer's disease and as a regulator in brain physiology. The inhibitory effect of Aß42 oligomers on Na,K-ATPase contributes to neuronal dysfunction in Alzheimer's disease. Still, the physiological role of the monomeric form of Aß42 interaction with Na,K-ATPase remains unclear. We report that Na,K-ATPase serves as a receptor for Aß42 monomer, triggering Src kinase activation. The co-localization of Aß42 with α1- and ß1-subunits of Na,K-ATPase, and Na,K-ATPase with Src kinase in SH-SY5Y neuroblastoma cells, was observed. Treatment of cells with 100 nM Aß42 causes Src kinase activation, but does not alter Na,K-ATPase transport activity. The interaction of Aß42 with α1ß1 Na,K-ATPase isozyme leads to activation of Src kinase associated with the enzyme. Notably, prevention of Na,K-ATPase:Src kinase interaction by a specific inhibitor pNaKtide disrupts the Aß-induced Src kinase activation. Stimulatory effect of Aß42 on Src kinase was lost under hypoxic conditions, which was similar to the effect of specific Na,K-ATPase ligands, the cardiotonic steroids. Our findings identify Na,K-ATPase as a Aß42 receptor, thus opening a prospect on exploring the physiological and pathological Src kinase activation caused by Aß42 in the nervous system.


Assuntos
Peptídeos beta-Amiloides , ATPase Trocadora de Sódio-Potássio , Quinases da Família src , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Neuroblastoma , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Quinases da Família src/metabolismo
3.
Biomedicines ; 10(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884966

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease accompanied by progressive cognitive and memory dysfunction due to disruption of normal electrotonic properties of neurons and neuronal loss. The Na,K-ATPase interaction with beta amyloid (Aß) plays an important role in AD pathogenesis. It has been shown that Na,K-ATPase activity in the AD brain was significantly lower than those in age-matched control brain. The interaction of Aß42 with Na,K-ATPase and subsequent oligomerization leads to inhibition of the enzyme activity. In this study interaction interfaces between three common Aß42 isoforms, and different conformations of human Na,K-ATPase (α1ß1) have been obtained using molecular modeling, including docking and molecular dynamics (MD). Interaction sites of Na,K-ATPase with Aß42 are localized between extracellular parts of α- and ß- subunits and are practically identical for Na,K-ATPase at different conformations. Thermodynamic parameters for the formation of Na,K-ATPase:Aß42 complex at different conformations acquired by isothermal titration calorimetry (ITC) are similar, which is in line with the data of molecular modeling. Similarity of Na,K-ATPase interaction interfaces with Aß in all conformations allowed us to cross-screen potential inhibitors for this interaction and find pharmaceutical compounds that could block it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA