Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cancer Immunol Immunother ; 72(9): 3029-3043, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37310433

RESUMO

Targeting co-stimulatory receptors promotes the activation and effector functions of anti-tumor lymphocytes. 4-1BB (CD137/TNFSF9), a member of the tumor necrosis factor receptor superfamily (TNFR-SF), is a potent co-stimulatory receptor that plays a prominent role in augmenting effector functions of CD8+ T cells, but also CD4+ T cells and NK cells. Agonistic antibodies against 4-1BB have entered clinical trials and shown signs of therapeutic efficacy. Here, we have used a T cell reporter system to evaluate various formats of 4-1BBL regarding their capacity to functionally engage its receptor. We found that a secreted 4-1BBL ectodomain harboring a trimerization domain derived from human collagen (s4-1BBL-TriXVIII) is a strong inducer of 4-1BB co-stimulation. Similar to the 4-1BB agonistic antibody urelumab, s4-1BBL-TriXVIII is very potent in inducing CD8+ and CD4+ T cell proliferation. We provide first evidence that s4-1BBL-TriXVIII can be used as an effective immunomodulatory payload in therapeutic viral vectors. Oncolytic measles viruses encoding s4-1BBL-TriXVIII significantly reduced tumor burden in a CD34+ humanized mouse model, whereas measles viruses lacking s4-1BBL-TriXVIII were not effective. Natural soluble 4-1BB ligand harboring a trimerization domain might have utility in tumor therapy especially when delivered to tumor tissue as systemic administration might induce liver toxicity.


Assuntos
Ligante 4-1BB , Linfócitos T CD8-Positivos , Camundongos , Animais , Humanos , Ligante 4-1BB/genética , Agentes de Imunomodulação , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral , Células Matadoras Naturais
2.
PLoS One ; 10(9): e0137573, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26348361

RESUMO

Blood tests are necessary, easy-to-perform and low-cost alternatives for monitoring of oncolytic virotherapy and other biological therapies in translational research. Here we assessed three candidate proteins with the potential to be used as biomarkers in biological fluids: two glucuronidases from E. coli (GusA) and Staphylococcus sp. RLH1 (GusPlus), and the luciferase from Gaussia princeps (GLuc). The three genes encoding these proteins were inserted individually into vaccinia virus GLV-1h68 genome under the control of an identical promoter. The three resulting recombinant viruses were used to infect tumor cells in cultures and human tumor xenografts in nude mice. In contrast to the actively secreted GLuc, the cytoplasmic glucuronidases GusA and GusPlus were released into the supernatants only as a result of virus-mediated oncolysis. GusPlus resulted in the most sensitive detection of enzyme activity under controlled assay conditions in samples containing as little as 1 pg/ml of GusPlus, followed by GusA (25 pg/ml) and GLuc (≥375 pg/ml). Unexpectedly, even though GusA had a lower specific activity compared to GusPlus, the substrate conversion in the serum of tumor-bearing mice injected with the GusA-encoding virus strains was substantially higher than that of GusPlus. This was attributed to a 3.2 fold and 16.2 fold longer half-life of GusA in the blood stream compared to GusPlus and GLuc respectively, thus a more sensitive monitor of virus replication than the other two enzymes. Due to the good correlation between enzymatic activity of expressed marker gene and virus titer, we conclude that the amount of the biomarker protein in the body fluid semiquantitatively represents the amount of virus in the infected tumors which was confirmed by low light imaging. We found GusA to be the most reliable biomarker for monitoring oncolytic virotherapy among the three tested markers.


Assuntos
Biomarcadores Tumorais/genética , Glucuronidase/genética , Luciferases/genética , Neoplasias/terapia , Terapia Viral Oncolítica , Animais , Linhagem Celular Tumoral , Escherichia coli/enzimologia , Glucuronidase/biossíntese , Humanos , Luciferases/biossíntese , Camundongos , Neoplasias/genética , Neoplasias/virologia , Vírus Oncolíticos/genética , Staphylococcus/enzimologia , Vaccinia virus/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Theranostics ; 5(10): 1045-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26199644

RESUMO

We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system.


Assuntos
Vetores Genéticos/genética , Melaninas/biossíntese , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Nanomedicina Teranóstica/métodos , Vaccinia virus/genética , Animais , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/metabolismo , Vetores Genéticos/farmacologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Nus , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagem , Neoplasias/virologia , Terapia Viral Oncolítica/instrumentação , Radiografia , Nanomedicina Teranóstica/instrumentação , Carga Tumoral , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/enzimologia , Vaccinia virus/metabolismo
4.
Methods Mol Biol ; 1317: 225-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26072410

RESUMO

Herein we describe the use of the vaccinia virus strain GLV-1h68 as a theragnostic agent in cancer models. To date, GLV-1h68 has been used successfully in more than 50 xenograft tumor models. The recombinant vaccinia virus strain has been equipped with heterologous expression cassettes for a luciferase-fluorescent protein fusion gene, bacterial beta-galactosidase, as well as a bacterial glucuronidase. The methods to investigate and monitor GLV-1h68 mediated virotherapy, including optical imaging and biomarker analysis, will be presented in detail.


Assuntos
Terapia Viral Oncolítica/métodos , Vaccinia virus/fisiologia , Animais , Linhagem Celular , Ensaios Enzimáticos , Glucuronidase/metabolismo , Humanos , Luciferases/metabolismo , Camundongos Nus , Imagem Óptica , Vaccinia virus/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Virol ; 88(19): 11556-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056902

RESUMO

UNLABELLED: Exogenous gene induction of therapeutic, diagnostic, and safety mechanisms could be a considerable improvement in oncolytic virotherapy. Here, we introduced a doxycycline-inducible promoter system (comprised of a tetracycline repressor, several promoter constructs, and a tet operator sequence) into oncolytic recombinant vaccinia viruses (rVACV), which were further characterized in detail. Experiments in cell cultures as well as in tumor-bearing mice were analyzed to determine the role of the inducible-system components. To accomplish this, we took advantage of the optical reporter construct, which resulted in the production of click-beetle luciferase as well as a red fluorescent protein. The results indicated that each of the system components could be used to optimize the induction rates and had an influence on the background expression levels. Depending on the given gene to be induced in rVACV-colonized tumors of patients, we discuss the doxycycline-inducible promoter system adjustment and further optimization. IMPORTANCE: Oncolytic virotherapy of cancer can greatly benefit from the expression of heterologous genes. It is reasonable that some of those heterologous gene products could have detrimental effects either on the cancer patient or on the oncolytic virus itself if they are expressed at the wrong time or if the expression levels are too high. Therefore, exogenous control of gene expression levels by administration of a nontoxic inducer will have positive effects on the safety as well as the therapeutic outcome of oncolytic virotherapy. In addition, it paves the way for the introduction of new therapeutic genes into the genome of oncolytic viruses that could not have been tested otherwise.


Assuntos
Adenocarcinoma/terapia , Neoplasias Pulmonares/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vaccinia virus/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Chlorocebus aethiops , Doxiciclina/farmacologia , Fibroblastos/patologia , Fibroblastos/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Vetores Genéticos , Células HeLa , Xenoenxertos , Humanos , Luciferases/genética , Luciferases/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Regiões Promotoras Genéticas , Replicação Viral , Proteína Vermelha Fluorescente
6.
PLoS One ; 9(6): e98533, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24887184

RESUMO

More than 90% of cancer mortalities are due to cancer that has metastasized. Therefore, it is crucial to intensify research on metastasis formation and therapy. Here, we describe for the first time the metastasizing ability of the human cervical cancer cell line C33A in athymic nude mice after subcutaneous implantation of tumor cells. In this model, we demonstrated a steady progression of lumbar and renal lymph node metastases during tumor development. Besides predominantly occurring lymphatic metastases, we visualized the formation of hematogenous metastases utilizing red fluorescent protein (RFP) expressing C33A-RFP cells. RFP positive cancer cells were found migrating in blood vessels and forming micrometastases in lungs of tumor-bearing mice. Next, we set out to analyze the influence of oncolytic virotherapy in the C33A-RFP model and demonstrated an efficient virus-mediated reduction of tumor size and metastatic burden. These results suggest the C33A-RFP cervical cancer model as a new platform to analyze cancer metastases as well as to test novel treatment options to combat metastases.


Assuntos
Modelos Biológicos , Metástase Neoplásica , Terapia Viral Oncolítica , Neoplasias do Colo do Útero/patologia , Animais , Ciclo Celular , Linhagem Celular Tumoral , Feminino , Humanos , Metástase Linfática , Camundongos , Microscopia de Fluorescência , Neoplasias do Colo do Útero/terapia
7.
Curr Cancer Drug Targets ; 14(4): 371-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24720338

RESUMO

The α(v)ß3 integrin is highly expressed in prostate cancer (PCa), in which it is a key player in tumour invasion, angiogenesis and metastasis formation. Therefore, α(v)ß3 integrin is considered a very promising target for molecular imaging of PCa. This study tested the potential of the novel α(v)ß3 integrin affine agent [68Ga]NOTA-RGD in comparison with the established [¹8F]fluoroethylcholine (FEC) and [¹8F]fluorodeoxyglucose (FDG) for assessing PCa using positron emission tomography (PET). [68Ga]NOTA-RGD showed a lower uptake in PC-3 and DU-145 cells compared with FEC and FDG. µPET imaging studies showed a good delineation of the PCa xenografts in mice. The means tumor-to-muscle and tumor-to-bone-ratio amounted 5.1 ± 1.4 and 5.2 ± 1.2 for [68Ga]NOTA-RGD compared with 2.6 ± 0.9 and 2.9 ± 1.6 for FDG, and 2.4 ± 0.7 and 0.8 ± 0.2 for FEC, respectively. The uptake of [68Ga]NOTA-RGD into tumor was fully inhibited by c(RGDfV), known to bind specifically to α(v)ß3 integrin, confirming the specificity of the tumor uptake in vivo. These results suggest that [68Ga]NOTA-RGD is a promising candidate for PET imaging of α(v)ß3 integrin expression in PCa and warrant further in vivo validations to ascertain its potential as an imaging agent for clinical use. The simple and fast preparation of [68Ga]NOTA-RGD may greatly facilitate its translation to a clinical setting.


Assuntos
Marcadores de Afinidade , Complexos de Coordenação , Radioisótopos de Gálio , Integrina alfaV/metabolismo , Integrina beta3/metabolismo , Oligopeptídeos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Marcadores de Afinidade/química , Marcadores de Afinidade/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Colina/análogos & derivados , Colina/metabolismo , Complexos de Coordenação/antagonistas & inibidores , Complexos de Coordenação/metabolismo , Fluordesoxiglucose F18/metabolismo , Radioisótopos de Gálio/química , Radioisótopos de Gálio/metabolismo , Humanos , Integrina alfaV/química , Integrina beta3/química , Integrinas/antagonistas & inibidores , Integrinas/metabolismo , Marcação por Isótopo , Masculino , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Oligopeptídeos/antagonistas & inibidores , Oligopeptídeos/metabolismo , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/farmacologia , Tomografia por Emissão de Pósitrons , Próstata/efeitos dos fármacos , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo
8.
Polym Chem ; (5): 1674-1681, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24518685

RESUMO

An enzymatically activatable prodrug of doxorubicin was covalently coupled, using click-chemistry, to the hydrophobic core of poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl)-methacrylamide-lactate] micelles. The release and cytotoxic activity of the prodrug was evaluated in vitro in A549 non-small-cell lung cancer cells after adding ß-glucuronidase, an enzyme which is present intracellularly in lysosomes and extracellularly in necrotic areas of tumor lesions. The prodrug-containing micelles alone and in combination with standard and ß-glucuronidase-producing oncolytic vaccinia viruses were also evaluated in vivo, in mice bearing A549 xenograft tumors. When combined with the oncolytic viruses, the micelles completely blocked tumor growth. Moreover, a significantly better antitumor efficacy as compared to virus treatment alone was observed when ß-glucuronidase virus treated tumor-bearing mice received the prodrug-containing micelles. These findings show that combining tumor-targeted drug delivery systems with oncolytic vaccinia viruses holds potential for improving anticancer therapy.

9.
Int J Cancer ; 133(12): 2989-99, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23729266

RESUMO

Oncolytic viruses are currently in clinical trials for a variety of tumors, including high grade gliomas. A characteristic feature of high grade gliomas is their high vascularity and treatment approaches targeting tumor endothelium are under investigation, including bevacizumab. The aim of this study was to improve oncolytic viral therapy by combining it with ionizing radiation and to radiosensitize tumor vasculature through a viral encoded anti-angiogenic payload. Here, we show how vaccinia virus-mediated expression of a single-chain antibody targeting VEGF resulted in radiosensitization of the tumor-associated vasculature. Cell culture experiments demonstrated that purified vaccinia virus encoded antibody targeting VEGF reversed VEGF-induced radioresistance specifically in endothelial cells but not tumor cells. In a subcutaneous model of U-87 glioma, systemically administered oncolytic vaccinia virus expressing anti-VEGF antibody (GLV-1h164) in combination with fractionated irradiation resulted in enhanced tumor growth inhibition when compared to nonanti-VEGF expressing oncolytic virus (GLV-1h68) and irradiation. Irradiation of tumor xenografts resulted in an increase in VACV replication of both GLV-1h68 and GLV-1h164. However, GLV-1h164 in combination with irradiation resulted in a drastic decrease in intratumoral VEGF levels and tumor vessel numbers in comparison to GLV-1h68 and irradiation. These findings demonstrate the incorporation of an oncolytic virus expressing an anti-VEGF antibody (GLV-1h164) into a fractionated radiation scheme to target tumor cells by enhanced VACV replication in irradiated tumors as well as to radiosensitize tumor endothelium which results in enhanced efficacy of combination therapy of human glioma xenografts.


Assuntos
Endotélio Vascular/efeitos da radiação , Glioma/terapia , Terapia Viral Oncolítica/métodos , Tolerância a Radiação , Vaccinia virus/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Glioma/irrigação sanguínea , Humanos , Masculino , Camundongos , Fator A de Crescimento do Endotélio Vascular/fisiologia
11.
J Transl Med ; 11: 79, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23531320

RESUMO

BACKGROUND: Despite availability of efficient treatment regimens for early stage colorectal cancer, treatment regimens for late stage colorectal cancer are generally not effective and thus need improvement. Oncolytic virotherapy using replication-competent vaccinia virus (VACV) strains is a promising new strategy for therapy of a variety of human cancers. METHODS: Oncolytic efficacy of replication-competent vaccinia virus GLV-1h68 was analyzed in both, cell cultures and subcutaneous xenograft tumor models. RESULTS: In this study we demonstrated for the first time that the replication-competent recombinant VACV GLV-1h68 efficiently infected, replicated in, and subsequently lysed various human colorectal cancer lines (Colo 205, HCT-15, HCT-116, HT-29, and SW-620) derived from patients at all four stages of disease. Additionally, in tumor xenograft models in athymic nude mice, a single injection of intravenously administered GLV-1h68 significantly inhibited tumor growth of two different human colorectal cell line tumors (Duke's type A-stage HCT-116 and Duke's type C-stage SW-620), significantly improving survival compared to untreated mice. Expression of the viral marker gene ruc-gfp allowed for real-time analysis of the virus infection in cell cultures and in mice. GLV-1h68 treatment was well-tolerated in all animals and viral replication was confined to the tumor. GLV-1h68 treatment elicited a significant up-regulation of murine immune-related antigens like IFN-γ, IP-10, MCP-1, MCP-3, MCP-5, RANTES and TNF-γ and a greater infiltration of macrophages and NK cells in tumors as compared to untreated controls. CONCLUSION: The anti-tumor activity observed against colorectal cancer cells in these studies was a result of direct viral oncolysis by GLV-1h68 and inflammation-mediated innate immune responses. The therapeutic effects occurred in tumors regardless of the stage of disease from which the cells were derived. Thus, the recombinant vaccinia virus GLV-1h68 has the potential to treat colorectal cancers independently of the stage of progression.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vaccinia virus/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Chlorocebus aethiops , Progressão da Doença , Humanos , Injeções Intravenosas , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Transplante de Neoplasias
12.
Proc Natl Acad Sci U S A ; 110(9): 3316-20, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401518

RESUMO

We reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate. Melanin production also facilitated deep tissue optoacoustic imaging as well as MRI. In addition, melanin was shown to be a suitable target for laser-induced thermotherapy and enhanced oncolytic viral therapy. In conclusion, melanin as a mediator for thermotherapy and reporter for different imaging modalities may soon become a versatile alternative to replace fluorescent proteins also in other biological systems. After ongoing extensive preclinical studies, melanin overproducing oncolytic virus strains might be used in clinical trials in patients with cancer.


Assuntos
Hipertermia Induzida/métodos , Lasers , Imageamento por Ressonância Magnética , Melaninas/biossíntese , Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Vaccinia virus/metabolismo , Animais , Células HeLa , Humanos , Raios Infravermelhos , Camundongos , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia
13.
PLoS One ; 7(9): e45942, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049897

RESUMO

Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a significant therapeutic potential in treating lymph node metastases of human PC-3 prostate carcinoma in tumor xenografts. In this study, underlying mechanisms of the virus-mediated metastases reduction were analyzed. Immunohistochemistry demonstrated that virus-treatment resulted in a drastically decrease of blood and lymph vessels, representing essential routes for PC-3 cell migration, in both tumors and metastases. Thus, GLV-1h68 drastically reduced essential routes for the metastatic spread of PC-3 cells. Furthermore, analysis of viral distribution in GLV-1h68-injected tumor-bearing mice by plaque assays, revealed significantly higher virus titers in metastases compared to solid tumors. To elucidate conditions potentially mediating the preferential viral colonization and eradication of metastases, microenvironmental components of uninfected tumors and metastases were compared by microscopic studies. These analyses revealed that PC-3 lymph node metastases showed increased vascular permeability, higher proliferation status of tumor cells as determined by BrdU- and Ki-67 assays and lesser necrosis of PC-3 cells than solid tumors. Moreover, an increased number of immune cells (MHCII(+)/CD68(+) macrophages, MHCII(+)/CD19(+) B lymphocytes) combined with an up-regulated expression of pro-inflammatory cytokines was observed in metastases in comparison to primary PC-3 tumors. We propose that these microenvironmental components mediated the metastatic tropism of GLV-1h68. Therefore, vaccinia virus-based oncolytic virotherapy might offer a novel treatment of metastatic prostate carcinomas in humans.


Assuntos
Vírus Oncolíticos/metabolismo , Neoplasias da Próstata/metabolismo , Vaccinia virus/metabolismo , Animais , Biomarcadores Tumorais , Bromodesoxiuridina/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica/métodos , Antígeno Ki-67/biossíntese , Metástase Linfática , Macrófagos/metabolismo , Masculino , Camundongos , Microscopia de Fluorescência/métodos , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias da Próstata/virologia
14.
PLoS One ; 7(5): e37239, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615950

RESUMO

Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.


Assuntos
Neoplasias Musculares/veterinária , Terapia Viral Oncolítica/métodos , Sarcoma/veterinária , Neoplasias de Tecidos Moles/veterinária , Vaccinia virus/fisiologia , Animais , Neoplasias Ósseas/secundário , Neoplasias Ósseas/veterinária , Linhagem Celular Tumoral , Cães , Camundongos , Neoplasias Musculares/terapia , Vírus Oncolíticos/fisiologia , Sarcoma/patologia , Sarcoma/terapia , Neoplasias de Tecidos Moles/terapia , Replicação Viral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Transl Med ; 10: 9, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22236378

RESUMO

BACKGROUND: Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. METHODS: Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. RESULTS: We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. CONCLUSION: Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects.


Assuntos
Plaquetas/efeitos dos fármacos , Interleucina-6/farmacologia , Mitomicina/toxicidade , Neoplasias/terapia , Neoplasias/virologia , Terapia Viral Oncolítica/efeitos adversos , Vaccinia virus/fisiologia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Injeções , Interleucina-6/sangue , Janus Quinases/metabolismo , Masculino , Camundongos , Camundongos Nus , Mitomicina/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vaccinia virus/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
PLoS One ; 6(10): e25409, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21984917

RESUMO

BACKGROUND: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties. METHODS AND FINDINGS: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and which of the bacterial ferritins is the most suitable reporter. Bacterial ferritins were overexpressed in probiotic E. coli Nissle 1917. Cultures of these bacteria were analyzed and those generating highest MRI contrast were further investigated in tumor bearing mice. Among members of three classes of bacterial ferritin tested, bacterioferritin showed the most promise as a reporter gene. Although all three proteins accumulated similar amounts of iron when overexpressed individually, bacterioferritin showed the highest contrast change. By site-directed mutagenesis we also show that the heme iron, a unique part of the bacterioferritin molecule, is not critical for MRI contrast change. Tumor-specific induction of bacterioferritin-expression in colonized tumors resulted in contrast changes within the bacteria-colonized tumors. CONCLUSIONS: Our data suggest that colonization and gene expression by live vectors expressing bacterioferritin can be monitored by MRI due to contrast changes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Imageamento por Ressonância Magnética , Metaloproteínas/metabolismo , Neoplasias/microbiologia , Animais , Contagem de Colônia Microbiana , Escherichia coli/crescimento & desenvolvimento , Feminino , Humanos , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
17.
J Transl Med ; 9: 172, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21989091

RESUMO

BACKGROUND: Oncolytic viral tumor therapy is an emerging field in the fight against cancer with rising numbers of clinical trials and the first clinically approved product (Adenovirus for the treatment of Head and Neck Cancer in China) in this field. Yet, until recently no general (bio)marker or reporter gene was described that could be used to evaluate successful tumor colonization and/or transgene expression in other biological therapies. METHODS: Here, a bacterial glucuronidase (GusA) encoded by biological therapeutics (e.g. oncolytic viruses) was used as reporter system. RESULTS: Using fluorogenic probes that were specifically activated by glucuronidase we could show 1) preferential activation in tumors, 2) renal excretion of the activated fluorescent compounds and 3) reproducible detection of GusA in the serum of oncolytic vaccinia virus treated, tumor bearing mice in several tumor models. Time course studies revealed that reliable differentiation between tumor bearing and healthy mice can be done as early as 9 days post injection of the virus. Regarding the sensitivity of the newly developed assay system, we could show that a single infected tumor cell could be reliably detected in this assay. CONCLUSION: GusA therefore has the potential to be used as a general marker in the preclinical and clinical evaluation of (novel) biological therapies as well as being useful for the detection of rare cells such as circulating tumor cells.


Assuntos
Bactérias/enzimologia , Glucuronidase/metabolismo , Terapia Viral Oncolítica , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Corantes Fluorescentes/metabolismo , Humanos , Camundongos , Neoplasias/patologia , Neoplasias/urina , Neoplasias/virologia , Especificidade por Substrato , Fatores de Tempo , Vaccinia virus/metabolismo
18.
BMC Microbiol ; 11: 163, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21745384

RESUMO

BACKGROUND: Specific cell targeting is an important, yet unsolved problem in bacteria-based therapeutic applications, like tumor or gene therapy. Here, we describe the construction of a novel, internalin A and B (InlAB)-deficient Listeria monocytogenes strain (Lm-spa+), which expresses protein A of Staphylococcus aureus (SPA) and anchors SPA in the correct orientation on the bacterial cell surface. RESULTS: This listerial strain efficiently binds antibodies allowing specific interaction of the bacterium with the target recognized by the antibody. Binding of Trastuzumab (Herceptin®) or Cetuximab (Erbitux®) to Lm-spa+, two clinically approved monoclonal antibodies directed against HER2/neu and EGFR/HER1, respectively, triggers InlAB-independent internalization into non-phagocytic cancer cell lines overexpressing the respective receptors. Internalization, subsequent escape into the host cell cytosol and intracellular replication of these bacteria are as efficient as of the corresponding InlAB-positive, SPA-negative parental strain. This specific antibody/receptor-mediated internalization of Lm-spa+ is shown in the murine 4T1 tumor cell line, the isogenic 4T1-HER2 cell line as well as the human cancer cell lines SK-BR-3 and SK-OV-3. Importantly, this targeting approach is applicable in a xenograft mouse tumor model after crosslinking the antibody to SPA on the listerial cell surface. CONCLUSIONS: Binding of receptor-specific antibodies to SPA-expressing L. monocytogenes may represent a promising approach to target L. monocytogenes to host cells expressing specific receptors triggering internalization.


Assuntos
Anticorpos Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Endocitose , Listeria monocytogenes/patogenicidade , Proteínas de Membrana/deficiência , Proteína Estafilocócica A/metabolismo , Animais , Linhagem Celular Tumoral , Receptores ErbB/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Ligação Proteica , Receptor ErbB-2/imunologia , Proteína Estafilocócica A/genética
19.
PLoS One ; 6(7): e22069, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779374

RESUMO

Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In this study, we analyzed for the first time the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 in two human hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5 (PLC) in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 efficiently colonized, replicated in, and did lyse these cancer cells in culture. Experiments with HuH7 and PLC xenografts have revealed that a single intravenous injection (i.v.) of mice with GLV-1h68 resulted in a significant reduction of primary tumor sizes compared to uninjected controls. In addition, replication of GLV-1h68 in tumor cells led to strong inflammatory and oncolytic effects resulting in intense infiltration of MHC class II-positive cells like neutrophils, macrophages, B cells and dendritic cells and in up-regulation of 13 pro-inflammatory cytokines. Furthermore, GLV-1h68 infection of PLC tumors inhibited the formation of hemorrhagic structures which occur naturally in PLC tumors. Interestingly, we found a strongly reduced vascular density in infected PLC tumors only, but not in the non-hemorrhagic HuH7 tumor model. These data demonstrate that the GLV-1h68 vaccinia virus may have an enormous potential for treatment of human hepatocellular carcinoma in man.


Assuntos
Carcinoma Hepatocelular/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Vaccinia virus/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Citometria de Fluxo , Humanos , Neoplasias Hepáticas/terapia , Camundongos , Camundongos Nus , Vírus Oncolíticos/genética , Vaccinia virus/genética , Replicação Viral
20.
J Oncol ; 2010: 736907, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20631910

RESUMO

Canine mammary carcinoma is a highly metastatic tumor that is poorly responsive to available treatment. Therefore, there is an urgent need to identify novel agents for therapy of this disease. Recently, we reported that the oncolytic vaccinia virus GLV-1h68 could be a useful tool for therapy of canine mammary adenoma in vivo. In this study we analyzed the therapeutic effect of GLV-1h68 against canine mammary carcinoma. Cell culture data demonstrated that GLV-1h68 efficiently infected and destroyed cells of the mammary carcinoma cell line MTH52c. Furthermore, after systemic administration, this attenuated vaccinia virus strain primarily replicated in canine tumor xenografts in nude mice. Finally, infection with GLV-1h68 led to strong inflammatory and oncolytic effects resulting in significant growth inhibition of the tumors. In summary, the data showed that the GLV-1h68 virus strain has promising potential for effective treatment of canine mammary carcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA