Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Lab Chip ; 18(2): 362-370, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29297912

RESUMO

In centrifugal microfluidics, dead volumes in valves downstream of mixing chambers can hardly be avoided. These dead volumes are excluded from mixing processes and hence cause a concentration gradient. Here we present a new bubble mixing concept which avoids such dead volumes. The mixing concept employs heating to create a temperature change rate (TCR) induced overpressure in the air volume downstream of mixing chambers. The main feature is an air vent with a high fluidic resistance, representing a low pass filter with respect to pressure changes. Fast temperature increase causes rapid pressure increase in downstream structures pushing the liquid from downstream channels into the mixing chamber. As air further penetrates into the mixing chamber, bubbles form, ascend due to buoyancy and mix the liquid. Slow temperature/pressure changes equilibrate through the high fluidic resistance air vent enabling sequential heating/cooling cycles to repeat the mixing process. After mixing, a complete transfer of the reaction volume into the downstream fluidic structure is possible by a rapid cooling step triggering TCR actuated valving. The new mixing concept is applied to rehydrate reagents for loop-mediated isothermal amplification (LAMP). After mixing, the reaction mix is aliquoted into several reaction chambers for geometric multiplexing. As a measure for mixing efficiency, the mean coefficient of variation (C[combining macron]V[combining macron], n = 4 LabDisks) of the time to positivity (tp) of the LAMP reactions (n = 11 replicates per LabDisk) is taken. The C[combining macron]V[combining macron] of the tp is reduced from 18.5% (when using standard shake mode mixing) to 3.3% (when applying TCR actuated bubble mixing). The bubble mixer has been implemented in a monolithic fashion without the need for any additional actuation besides rotation and temperature control, which are needed anyhow for the assay workflow.

2.
Lab Chip ; 16(1): 199-207, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26610171

RESUMO

Portable point-of-care devices for pathogen detection require easy, minimal and user-friendly handling steps and need to have the same diagnostic performance compared to centralized laboratories. In this work we present a fully automated sample-to-answer detection of influenza A H3N2 virus in a centrifugal LabDisk with complete prestorage of reagents. Thus, the initial supply of the sample remains the only manual handling step. The self-contained LabDisk automates by centrifugal microfluidics all necessary process chains for PCR-based pathogen detection: pathogen lysis, magnetic bead based nucleic acid extraction, aliquoting of the eluate into 8 reaction cavities, and real-time reverse transcription polymerase chain reaction (RT-PCR). Prestored reagents comprise air dried specific primers and fluorescence probes, lyophilized RT-PCR mastermix and stick-packaged liquid reagents for nucleic acid extraction. Employing two different release frequencies for the stick-packaged liquid reagents enables on-demand release of highly wetting extraction buffers, such as sequential release of lysis and binding buffer. Microfluidic process-flow was successful in 54 out of 55 tested LabDisks. We demonstrate successful detection of the respiratory pathogen influenza A H3N2 virus in a total of 18 LabDisks with sample concentrations down to 2.39 × 10(4) viral RNA copies per ml, which is in the range of clinical relevance. Furthermore, we detected RNA bacteriophage MS2 acting as internal control in 3 LabDisks with a sample concentration down to 75 plaque forming units (pfu) per ml. All experiments were applied in a 2 kg portable, laptop controlled point-of-care device. The turnaround time of the complete analysis from sample-to-answer was less than 3.5 hours.


Assuntos
Indicadores e Reagentes/química , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Técnicas Analíticas Microfluídicas , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/instrumentação
3.
Lab Chip ; 15(18): 3749-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26235430

RESUMO

Diagnosis of infectious diseases suffers from long turnaround times for gold standard culture-based identification of bacterial pathogens, therefore impeding timely specific antimicrobial treatment based on laboratory evidence. Rapid molecular diagnostics-based technologies enable detection of microorganisms within hours however cumbersome workflows and complex equipment still prevent their widespread use in the routine clinical microbiology setting. We developed a centrifugal-microfluidic "LabDisk" system for rapid and highly-sensitive pathogen detection on a point-of-care analyser. The unit-use LabDisk with pre-stored reagents features fully automated and integrated DNA extraction, consensus multiplex PCR pre-amplification and geometrically-multiplexed species-specific real-time PCR. Processing merely requires loading of the sample and DNA extraction reagents with minimal hands-on time of approximately 5 min. We demonstrate detection of as few as 3 colony-forming-units (cfu) of Staphylococcus warneri, 200 cfu of Streptococcus agalactiae, 5 cfu of Escherichia coli and 2 cfu of Haemophilus influenzae in a 200 µL serum sample. The turnaround time of the complete analysis from "sample-to-result" was 3 h and 45 min. The LabDisk consequently provides an easy-to-use molecular diagnostic platform for rapid and highly-sensitive detection of bacterial pathogens without requiring major hands-on time and complex laboratory instrumentation.


Assuntos
Bactérias , Técnicas de Tipagem Bacteriana , DNA Bacteriano , Dispositivos Lab-On-A-Chip , Reação em Cadeia da Polimerase Multiplex , Bactérias/classificação , Bactérias/genética , Técnicas de Tipagem Bacteriana/instrumentação , Técnicas de Tipagem Bacteriana/métodos , Centrifugação/instrumentação , Centrifugação/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , Reação em Cadeia da Polimerase Multiplex/instrumentação , Reação em Cadeia da Polimerase Multiplex/métodos
4.
Chem Soc Rev ; 44(17): 6187-229, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26035697

RESUMO

Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as liquid transport, metering, mixing and valving. The available unit operations cover the entire range of automated liquid handling requirements and enable efficient miniaturization, parallelization, and integration of assays.


Assuntos
Centrifugação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Centrifugação/métodos , Química Clínica/instrumentação , Química Clínica/métodos , Desenho de Equipamento , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Humanos , Ácidos Nucleicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA