Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Infect Dis ; 225(12): 2087-2096, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33216113

RESUMO

BACKGROUND: PC786 is a nebulized nonnucleoside respiratory syncytial virus (RSV) polymerase inhibitor designed to treat RSV, which replicates in the superficial layer of epithelial cells lining the airways. METHODS: Fifty-six healthy volunteers inoculated with RSV-A (Memphis 37b) were randomly dosed with either nebulized PC786 (5 mg) or placebo, twice daily for 5 days, from either 12 hours after confirmation of RSV infection or 6 days after virus inoculation. Viral load (VL), disease severity, pharmacokinetics, and safety were assessed until discharge. RSV infection was confirmed by reverse-transcription quantitative polymerase chain reaction with any positive value (intention-to-treat infected [ITT-I] population) or RSV RNA ≥1 log10 plaque-forming unit equivalents (PFUe)/mL (specific intention-to-treat infection [ITT-IS] population) in nasal wash samples. RESULTS: In the ITT-I population, the mean VL area under the curve (AUC) was lower in the PC786 group than the placebo group (274.1 vs 406.6 log10 PFUe/mL × hour; P = .0359). PC786 showed a trend toward reduction of symptom score and mucous weight. In ITT-IS (post hoc analysis), the latter was statistically significant as well as VL AUC (P = .0126). PC786 showed an early time to maximum plasma concentration, limited systemic exposure, and long half-life and consequently a 2-fold accumulation over the 5-day dosing period. PC786 was well tolerated. CONCLUSIONS: Nebulized PC786 demonstrated a significant antiviral effect against RSV, warranting further clinical study. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov: NCT03382431; EudraCT: 2017-002563-18.


Assuntos
Antivirais , Infecções por Vírus Respiratório Sincicial , Antivirais/efeitos adversos , Benzamidas/efeitos adversos , Benzazepinas/efeitos adversos , Humanos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Compostos de Espiro/efeitos adversos , Resultado do Tratamento
2.
Eur J Pharm Sci ; 163: 105878, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015430

RESUMO

PC945 is a novel antifungal agent, optimised for inhaled treatment. In this study, the relationship between antifungal effects of PC945 and its exposure in the lungs was investigated in Aspergillus fumigatus intranasally infected, temporarily neutropenic mice. Mice were given prophylactic PC945 intranasally once daily (0.56 µg/mouse) on either Day -7 to 0 (8 doses) or Day -1 to 0 (2 doses). Lung tissue, plasma and bronchoalveolar lavage (BAL) fluid were collected 24 or 72 h post A. fumigatus inoculation for biomarker and pharmacokinetic analyses. BAL cell pellets and supernatants were prepared separately by centrifugation. 8 prophylactic doses of PC945 were found to demonstrate significantly stronger antifungal effects (lung fungal burden and galactomannan (GM) in BAL and plasma) than prophylaxis with 2 doses. PC945 concentrations were below the limit of detection in plasma but readily measured in lung extracts. The concentrations were much higher after extended prophylaxis (709 and 312 ng/g of lung) than short prophylaxis (301 and 195 ng/g of lung) at 24 and 72 h post last dose, respectively, suggesting PC945 accumulation in whole lung after repeat dosing although it was likely to be a mixture of dissolved and undissolved PC945, meaning that the data should be interpreted with caution. Interestingly, low concentrations of PC945 were detected in BAL supernatant (6.6 and 1.9 ng/ml) whereas high levels of PC945 were measured in BAL cell pellets (626 and 406 ng/ml) at 24 and 72 h post last dose, respectively, in extended prophylaxis. In addition, the PC945 concentrations in BAL cells showed a statistically significant correlation with measured anti-fungal activities. These observations will be pursued, and it is intended that BAL cell concentrations of PC945 be measured in future clinical studies rather than standard measurement in BAL itself. Thus, PC945's profile makes it an attractive potential prophylactic agent for the prevention of pulmonary fungal infections.


Assuntos
Antifúngicos , Aspergillus fumigatus , Animais , Antifúngicos/farmacologia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Pulmão , Mananas , Camundongos
3.
Pharmacol Res Perspect ; 9(1): e00690, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340279

RESUMO

PC945 is a novel antifungal triazole formulated for nebulized delivery to treat lung Aspergillus infections. Pharmacokinetic and safety profiles from nonclinical studies and clinical trials in healthy subjects, and subjects with mild asthma were characterized. Toxicokinetics were assessed following daily 2-hour inhalation for 14 days. Potential for drug-drug interactions was evaluated using pooled human liver microsomes. Clinical safety and pharmacokinetics were assessed following (a) single inhaled doses (0.5-10 mg), (b) 7-day repeat doses (5 mg daily) in healthy subjects; (c) a single dose (5 mg) in subjects with mild asthma. Cmax occurred 4 hours (rats) or immediately (dogs) after a single dose. PC945 lung concentrations were substantially higher (>2000-fold) than those in plasma. PC945 only inhibited CYP3A4/5 substrate metabolism (IC50 : 1.33 µM [testosterone] and 0.085 µM [midazolam]). Geometric mean Cmax was 322 pg/mL (healthy subjects) and 335 pg/mL (subjects with mild asthma) 4-5 hours (median tmax ) after a single inhalation (5 mg). Following repeat, once daily inhalation (5 mg), Day 7 Cmax was 951 pg/mL (0.0016 µM) 45 minutes after dosing. Increases in Cmax and AUC0-24h were approximately dose-proportional (0.5-10 mg). PC945 administration was well tolerated in both healthy subjects and subjects with mild asthma. Treatment-emergent adverse events were mild/moderate and resolved before the study ended. No clinically significant lung function changes were observed. PC945 pharmacokinetics translated from nonclinical species to humans showed slow absorption from lungs and low systemic exposure, thereby limiting the potential for adverse side effects and drug interactions commonly seen with systemically delivered azoles.


Assuntos
Antifúngicos/farmacocinética , Benzamidas/farmacocinética , Triazóis/farmacocinética , Administração por Inalação , Adulto , Animais , Antifúngicos/efeitos adversos , Antifúngicos/sangue , Antifúngicos/farmacologia , Asma/sangue , Asma/metabolismo , Asma/fisiopatologia , Benzamidas/efeitos adversos , Benzamidas/sangue , Benzamidas/farmacologia , Proteínas Sanguíneas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Método Duplo-Cego , Interações Medicamentosas , Feminino , Volume Expiratório Forçado , Humanos , Pulmão/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Ratos Wistar , Triazóis/efeitos adversos , Triazóis/sangue , Triazóis/farmacologia
4.
J Fungi (Basel) ; 6(4)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348852

RESUMO

Disease due to pulmonary Aspergillus infection remains a significant unmet need, particularly in immunocompromised patients, patients in critical care and those with underlying chronic lung diseases. To date, treatment using inhaled antifungal agents has been limited to repurposing available systemic medicines. PC945 is a novel triazole antifungal agent, a potent inhibitor of CYP51, purpose-designed to be administered via inhalation for high local lung concentrations and limited systemic exposure. In preclinical testing, PC945 is potent versus Aspergillus spp. and Candida spp. and showed two remarkable properties in preclinical studies, in vitro and in vivo. The antifungal effects against Aspergillus fumigatus accumulate on repeat dosing and improved efficacy has been demonstrated when PC945 is dosed in combination with systemic anti-fungal agents of multiple classes. Resistance to PC945 has been induced in Aspergillus fumigatus in vitro, resulting in a strain which remained susceptible to other antifungal triazoles. In healthy volunteers and asthmatics, nebulised PC945 was well tolerated, with limited systemic exposure and an apparently long lung residency time. In two lung transplant patients, PC945 treated an invasive pulmonary Aspergillus infection that had been unresponsive to multiple antifungal agents (systemic ± inhaled) without systemic side effects or detected drug-drug interactions.

5.
J Antimicrob Chemother ; 74(10): 2943-2949, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325309

RESUMO

OBJECTIVES: Management of Candida auris infection is difficult as this yeast exhibits resistance to different classes of antifungals, necessitating the development of new antifungals. The aim of this study was to investigate the susceptibility of C. auris to a novel antifungal triazole, PC945, optimized for topical delivery. METHODS: A collection of 50 clinical isolates was obtained from a tertiary care hospital in North India. Nine isolates from the UK, 10 from a CDC panel (USA) and 3 from the CBS-KNAW culture collection (Japanese and South Korean isolates) were also obtained. MICs (azole endpoint) of PC945 and other triazoles were determined in accordance with CLSI M27 (third edition). Quality control strains were included [Candida parapsilosis (ATCC 22019) and Candida krusei (ATCC 6258)]. RESULTS: Seventy-four percent of isolates tested showed reduced susceptibility to fluconazole (≥64 mg/L). PC945 (geometric mean MIC = 0.058 mg/L) was 7.4-fold and 1.5-fold more potent than voriconazole and posaconazole, respectively (both P < 0.01). PC945 MIC values correlated with those of voriconazole or posaconazole, and only three isolates were found to be cross-resistant between PC945 and other azoles. ERG11 sequence analysis revealed several mutations, but no correlation could be established with the MIC of PC945. Tentative epidemiological cut-off values (ECOFFs) evaluated by CLSI's ECOFF Finder (at 99%) with 24 h reading of MICs were 1, 4 and 1 mg/L for PC945, voriconazole and posaconazole, respectively. MIC values for quality control strains of all triazoles were in the normal ranges. CONCLUSIONS: PC945 was found to be a more potent inhibitor than posaconazole, voriconazole and fluconazole of C. auris isolates collected globally, warranting further laboratory and clinical evaluations.


Assuntos
Antifúngicos/farmacologia , Benzamidas/farmacologia , Candida/efeitos dos fármacos , Triazóis/farmacologia , Ásia , Candida parapsilosis/efeitos dos fármacos , Candidíase/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , Reino Unido , Estados Unidos
6.
J Antimicrob Chemother ; 74(10): 2950-2958, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31361006

RESUMO

OBJECTIVES: The growing emergence of azole-resistant Aspergillus fumigatus strains worldwide is a major concern for current systemic antifungal treatment. Here we report antifungal activities of a novel inhaled triazole, PC1244, against a collection of multi-azole-resistant A. fumigatus strains. METHODS: MICs of PC1244 were determined for A. fumigatus carrying TR34/L98H (n = 81), TR46/Y121F/T289A (n = 24), M220 (n = 6), G54 (n = 11), TR53 (n = 1), TR463/Y121F/T289A (n = 2), G448S (n = 1), G432C (n = 1) and P216S (n = 1) resistance alleles originating from either India, the Netherlands or France. The effects of PC1244 were confirmed in an in vitro model of the human alveolus and in vivo in temporarily neutropenic, immunocompromised mice. RESULTS: PC1244 exhibited potent inhibition [geometric mean MIC (range), 1.0 mg/L (0.125 to >8 mg/L)] of growth of A. fumigatus strains carrying cyp51A gene mutations, showing much greater potency than voriconazole [15 mg/L (0.5 to >16 mg/L)], and an effect similar to those on other azole-susceptible Aspergillus spp. (Aspergillus flavus, Aspergillus terreus, Aspergillus tubingensis, Aspergillus nidulans, Aspergillus niger, Aspergillus nomius, Aspergillus tamarii) (0.18-1 mg/L). In TR34/L98H and TR46/Y121F/T289A A. fumigatus-infected in vitro human alveolus models, PC1244 achieved superior inhibition (IC50, 0.25 and 0.34 mg/L, respectively) compared with that of voriconazole (IC90, >3 mg/L and >10 mg/L, respectively). In vivo, once-daily intranasal administration of PC1244 (0.56-70 µg/mouse) to the A. fumigatus (AF91 with M220V)-infected mice reduced pulmonary fungal load and serum galactomannan more than intranasal posaconazole. CONCLUSIONS: PC1244 has the potential to become a novel topical treatment of azole-resistant pulmonary aspergillosis.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Triazóis/farmacologia , Animais , Aspergillus/classificação , Aspergillus/isolamento & purificação , Contagem de Colônia Microbiana , Modelos Animais de Doenças , França , Galactose/análogos & derivados , Humanos , Índia , Pulmão/microbiologia , Mananas/sangue , Camundongos , Testes de Sensibilidade Microbiana , Países Baixos , Aspergilose Pulmonar/microbiologia , Resultado do Tratamento , Triazóis/administração & dosagem
7.
Sci Rep ; 9(1): 9482, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263150

RESUMO

Invasive pulmonary Aspergillosis is a leading cause of morbidity and mortality in immunosuppressed patients and treatment outcomes using oral antifungal triazoles remain suboptimal. Here we show that combining topical treatment using PC945, a novel inhaled triazole, with systemic treatment using known triazoles demonstrated synergistic antifungal effects against Aspergillus fumigatus (AF) in an in vitro human alveolus bilayer model and in the lungs of neutropenic immunocompromised mice. Combination treatment with apical PC945 and either basolateral posaconazole or voriconazole resulted in a synergistic interaction with potency improved over either compound as a monotherapy against both azole-susceptible and resistant AF invasion in vitro. Surprisingly there was little, or no synergistic interaction observed when apical and basolateral posaconazole or voriconazole were combined. In addition, repeated prophylactic treatment with PC945, but not posaconazole or voriconazole, showed superior effects to single prophylactic dose, suggesting tissue retention and/or accumulation of PC945. Furthermore, in mice infected with AF intranasally, 83% of animals treated with a combination of intranasal PC945 and oral posaconazole survived until day 7, while little protective effects were observed by either compound alone. Thus, the combination of a highly optimised topical triazole with oral triazoles potentially induces synergistic effects against AF infection.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/crescimento & desenvolvimento , Benzamidas/farmacologia , Alvéolos Pulmonares , Aspergilose Pulmonar/tratamento farmacológico , Triazóis/farmacologia , Voriconazol/farmacologia , Administração Tópica , Benzamidas/agonistas , Linhagem Celular , Sinergismo Farmacológico , Humanos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/microbiologia , Alvéolos Pulmonares/patologia , Aspergilose Pulmonar/metabolismo , Aspergilose Pulmonar/patologia , Triazóis/agonistas , Voriconazol/agonistas
8.
Br J Pharmacol ; 175(12): 2520-2534, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29579332

RESUMO

BACKGROUND AND PURPOSE: Effective anti-respiratory syncytial virus (RSV) agents are still not available for clinical use. Current major targets are virus surface proteins, such as a fusion protein involved in viral entry, but agents effective after RSV infection is established are required. Here we have investigated the effects of late therapeutic intervention with a novel inhaled RSV polymerase inhibitor, PC786, on RSV infection in human airway epithelium. EXPERIMENTAL APPROACH: Air liquid interface-cultured bronchial or small airway epithelium was infected with RSVA2. PC786 was applied apically or basolaterally once daily following peak virus load on Day 3 post inoculation. Apical wash was collected daily for determination of viral burden by PCR and plaque assay (primary endpoints) and biomarker analyses. The effects were compared with those of ALS-8112, an anti-RSV nucleoside analogue, and GS-5806, a fusion-protein inhibitor, which were treated basolaterally. KEY RESULTS: Late intervention with GS-5806 did not show significant anti-viral effects, but PC786 produced potent, concentration-dependent inhibition of viral replication with viral load falling below detectable limits 3 days after treatment commenced in airway epithelium. These effects were superior to those of ALS-8112. PC786 showed inhibitory activities against RSV-induced increases of CCL5, IL-6, double-strand DNA and mucin. The effects of PC786 were also confirmed in small airway epithelium. CONCLUSION AND IMPLICATIONS: Late therapeutic intervention with the RSV polymerase inhibitor, PC786, reduced the viral burden quickly in human airway epithelium. Thus, PC786 demonstrates the potential to be an effective therapeutic agent to treat active RSV infection.


Assuntos
Antivirais/farmacologia , Epitélio/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Compostos de Espiro/farmacologia , Antivirais/química , Benzamidas , Benzazepinas , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Relação Dose-Resposta a Droga , Epitélio/metabolismo , Epitélio/virologia , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Compostos de Espiro/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-29439966

RESUMO

The antifungal effects of the novel triazole PC1244, designed for topical or inhaled administration, against Aspergillus fumigatus were tested in a range of in vitro and in vivo studies. PC1244 demonstrated potent antifungal activities against clinical A. fumigatus isolates (n = 96) with a MIC range of 0.016 to 0.25 µg/ml, whereas the MIC range for voriconazole was 0.25 to 0.5 µg/ml. PC1244 was a strong tight-binding inhibitor of recombinant A. fumigatus CYP51A and CYP51B (sterol 14α-demethylase) enzymes and strongly inhibited ergosterol synthesis in A. fumigatus with a 50% inhibitory concentration of 8 nM. PC1244 was effective against a broad spectrum of pathogenic fungi (MIC range, <0.0078 to 2 µg/ml), especially Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae PC1244 also proved to be quickly absorbed into both A. fumigatus hyphae and bronchial epithelial cells, producing persistent antifungal effects. In addition, PC1244 showed fungicidal activity (minimum fungicidal concentration, 2 µg/ml) which indicated that it was 8-fold more potent than voriconazole. In vivo, once-daily intranasal administration of PC1244 (3.2 to 80 µg/ml) to temporarily neutropenic, immunocompromised mice 24 h after inoculation with itraconazole-susceptible A. fumigatus substantially reduced the fungal load in the lung, the galactomannan concentration in serum, and circulating inflammatory cytokine levels. Furthermore, 7 days of extended prophylaxis with PC1244 showed in vivo effects superior to those of 1 day of prophylactic treatment, suggesting accumulation of the effects of PC1244. Thus, PC1244 has the potential to be a novel therapy for the treatment of A. fumigatus infection in the lungs of humans.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Azóis/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Triazóis/farmacologia , Administração Intranasal , Animais , Aspergillus fumigatus/isolamento & purificação , Candida/efeitos dos fármacos , Cryptococcus/efeitos dos fármacos , Citocinas/sangue , Farmacorresistência Fúngica , Células Epiteliais/metabolismo , Ergosterol/biossíntese , Proteínas Fúngicas/antagonistas & inibidores , Galactose/análogos & derivados , Humanos , Hifas/metabolismo , Mananas/sangue , Camundongos , Testes de Sensibilidade Microbiana , Rhizopus/efeitos dos fármacos , Trichophyton/efeitos dos fármacos , Voriconazol/farmacologia
10.
Mycoses ; 60(11): 728-735, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28699245

RESUMO

Although anti-fungal triazoles are dosed orally or systemically for Aspergillus fumigatus infection, systemic adverse events and limited exposure of the lung cavity would make a topical treatment for the lung an attractive option. In this study, we examined the effects of intranasally dosed posaconazole on survival rates and biomarkers in A. fumigatus (itraconazole susceptible: ATCC13073 [Af]; or resistant: NCPF7100 [AfR]) infected, temporarily neutropenic A/J mice. Once daily treatment produced a dose-dependent improvement of survival of Af-infected mice (ED50 : 0.019 mg/mouse [approx. 0.755 mg/kg, in]), similar to its potency (ED50 : 0.775 mg/kg, po) after once daily oral dosing. For AfR infection, either intranasal or oral posaconazole was largely ineffective on survival, although the highest dose of intranasal treatment (0.35 mg/mouse) achieved 75% survival rate. Early intervention (treated on days 0, 1, 2 and 3 postinfection) and late intervention (treated on days 1, 2 and 3) with intranasal posaconazole (0.014-0.35 mg/mouse) demonstrated potent inhibition of lung fungal load and galactomannan levels in both bronchoalveolar lavage fluid (BALF) and serum as well as inflammatory cells, IFN-γ, IL-17 and malondialdehyde (MDA) in BALF. Thus, posaconazole when dosed intranasally once daily showed an improvement of survival equivalent to or better than oral treatment, and produced potent inhibition of fungal load and biomarkers.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Mananas/análise , Triazóis/farmacologia , Administração Intranasal , Administração Oral , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Biomarcadores/análise , Citocinas/análise , Modelos Animais de Doenças , Farmacorresistência Fúngica , Galactose/análogos & derivados , Humanos , Hospedeiro Imunocomprometido , Itraconazol/farmacologia , Pulmão/microbiologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Organismos Livres de Patógenos Específicos
11.
Artigo em Inglês | MEDLINE | ID: mdl-28652242

RESUMO

Although respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in infants and young children, attempts to develop an effective therapy have so far proved unsuccessful. Here we report the preclinical profiles of PC786, a potent nonnucleoside RSV L protein polymerase inhibitor, designed for inhalation treatment of RSV infection. PC786 demonstrated a potent and selective antiviral activity against laboratory-adapted or clinical isolates of RSV-A (50% inhibitory concentration [IC50], <0.09 to 0.71 nM) and RSV-B (IC50, 1.3 to 50.6 nM), which were determined by inhibition of cytopathic effects in HEp-2 cells without causing detectable cytotoxicity. The underlying inhibition of virus replication was confirmed by PCR analysis. The effects of PC786 were largely unaffected by the multiplicity of infection (MOI) and were retained in the face of established RSV replication in a time-of-addition study. Persistent anti-RSV effects of PC786 were also demonstrated in human bronchial epithelial cells. In vivo intranasal once daily dosing with PC786 was able to reduce the virus load to undetectable levels in lung homogenates from RSV-infected mice and cotton rats. Treatment with escalating concentrations identified a dominant mutation in the L protein (Y1631H) in vitro In addition, PC786 potently inhibited RSV RNA-dependent RNA polymerase (RdRp) activity in a cell-free enzyme assay and minigenome assay in HEp-2 cells (IC50, 2.1 and 0.5 nM, respectively). Thus, PC786 was shown to be a potent anti-RSV agent via inhibition of RdRp activity, making topical treatment with this compound a novel potential therapy for the treatment of human RSV infections.


Assuntos
Antivirais/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Compostos de Espiro/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Benzamidas , Benzazepinas , Linhagem Celular , Células Epiteliais/virologia , Humanos , Camundongos , Ratos , Mucosa Respiratória/virologia , Infecções Respiratórias/virologia , Carga Viral/efeitos dos fármacos , Proteínas Virais/biossíntese
12.
Artigo em Inglês | MEDLINE | ID: mdl-28630185

RESUMO

PC945 is a novel triazole optimized for lung delivery, and the objective of this study is to determine the effects of intranasally dosed PC945 on Aspergillus fumigatus infection and associated biomarkers in immunocompromised mice. PC945, posaconazole, or voriconazole was administered intranasally once daily on days 0 to 3 (early intervention) or days 1 to 3 (late intervention) postinfection in temporarily neutropenic A/J mice infected intranasally with A. fumigatus, and bronchoalveolar lavage fluid (BALF) and serum were collected on day 3. The effects of extended prophylaxis treatment (daily from days -7 to +3 or days -7 to 0) were also compared with those of the shorter treatment regimens (days -1 to +3 or days -1 and 0). Early and late interventions with PC945 (2.8 to 350 µg/mouse; approximately 0.11 to ∼14 mg/kg of body weight) were found to inhibit lung fungal loads and to decrease the concentrations of galactomannan (GM) in both BALF and serum as well as several biomarkers in BALF (interferon gamma [IFN-γ], interleukin-17 [IL-17], and malondialdehyde) and serum (tumor necrosis factor alpha [TNF-α] and IL-6) in a dose-dependent manner and were >3- and >47-fold more potent than intranasally dosed posaconazole and voriconazole, respectively. Furthermore, extended prophylaxis with low-dose PC945 (0.56 µg/mouse; 0.022 mg/kg) was found to inhibit fungal loads and to decrease the concentrations biomarkers more potently than did the shorter treatment regimens. Thus, PC945 dosed intranasally once daily showed potent antifungal effects, and the effects of PC945 accumulated upon repeat dosing and were persistent. Therefore, PC945 has the potential to be a novel inhaled therapy for the treatment of A. fumigatus infection in humans.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Biomarcadores/metabolismo , Hospedeiro Imunocomprometido/efeitos dos fármacos , Triazóis/farmacologia , Administração Intranasal/métodos , Animais , Aspergilose/metabolismo , Aspergilose/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana/métodos , Voriconazol/farmacologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-28223388

RESUMO

The profile of PC945, a novel triazole antifungal designed for administration via inhalation, was assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tightly binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B) activity (50% inhibitory concentrations [IC50s], 0.23 µM and 0.22 µM, respectively) with characteristic type II azole binding spectra. Against 96 clinically isolated A. fumigatus strains, the MIC values of PC945 ranged from 0.032 to >8 µg/ml, while those of voriconazole ranged from 0.064 to 4 µg/ml. Spectrophotometric analysis of the effects of PC945 against itraconazole-susceptible and -resistant A. fumigatus growth yielded IC50 (determined based on optical density [OD]) values of 0.0012 to 0.034 µg/ml, whereas voriconazole (0.019 to >1 µg/ml) was less effective than PC945. PC945 was effective against a broad spectrum of pathogenic fungi (with MICs ranging from 0.0078 to 2 µg/ml), including Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae (1 or 2 isolates each). In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945 and then washed, PC945 was found to be absorbed quickly into both target and nontarget cells and to produce persistent antifungal effects. Among temporarily neutropenic immunocompromised mice infected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treated intranasally with PC945 at 0.56 µg/mouse, while posaconazole showed similar effects (44%) at 14 µg/mouse. This profile affirms that topical treatment with PC945 should provide potent antifungal activity in the lung.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Benzamidas/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Triazóis/farmacologia , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/isolamento & purificação , Células Cultivadas , Sistema Enzimático do Citocromo P-450 , Humanos , Itraconazol/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Voriconazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA