Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Vet Res ; 55(1): 89, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010163

RESUMO

Since the reintroduction of African swine fever virus (ASFV) in Europe in 2007 and its subsequent spread to Asia, wild boar has played a crucial role in maintaining and disseminating the virus. There are significant gaps in the knowledge regarding infection dynamics and disease pathogenesis in domestic pigs and wild boar, particularly at the early infection stage. We aimed to compare domestic pigs and wild boar infected intranasally to mimic natural infection with one of the original highly virulent genotype II ASFV isolates (Armenia 2007). The study involved euthanising three domestic pigs and three wild boar on days 1, 2, 3, and 5 post-infection, while four domestic pigs and four wild boar were monitored until they reached a humane endpoint. The parameters assessed included clinical signs, macroscopic lesions, viremia levels, tissue viral load, and virus shedding in nasal and rectal swabs from day 1 post-infection. Compared with domestic pigs, wild boar were more susceptible to ASFV, with a shorter incubation period and earlier onset of clinical signs. While wild boar reached a humane endpoint earlier than domestic pigs did, the macroscopic lesions were comparatively less severe. In addition, wild boar had earlier viremia, and the virus was also detected earlier in tissues. The medial retropharyngeal lymph nodes were identified as key portals for ASFV infection in both subspecies. No viral genome was detected in nasal or rectal swabs until shortly before reaching the humane endpoint in both domestic pigs and wild boar, suggesting limited virus shedding in acute infections.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Genótipo , Sus scrofa , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Suínos , Eliminação de Partículas Virais , Viremia/veterinária , Viremia/virologia , Carga Viral/veterinária , Virulência
2.
Artigo em Inglês | MEDLINE | ID: mdl-38837452

RESUMO

BACKGROUND: Autoimmune blistering diseases (AIBDs) are severe dermatologic disorders known for their debilitating physical impact. Recent research has reported that AIBDs lead to psychosocial impairment, including depression and anxiety. Missing from the extant literature is an examination of the impact of AIBDs on body image and related psychological constructs. OBJECTIVES: The current study seeks to characterize the psychological and social consequences of AIBD diagnosis, with particular attention to body image dissatisfaction. METHODS: We conducted a survey study of adults with AIBDs. The survey was open from February 2023 to March 2023. Validated self-report questionnaires assessed depressive symptomatology, body image disturbance and quality of life. Demographic information and self-reported psychiatric history before and after AIBD diagnosis were collected via self-report. Participants were 451 adults with AIBDs, recruited through the International Pemphigus and Pemphigoid Foundation newsletters, email distribution lists and social media. RESULTS: Participants reported increased incidence of psychiatric disorders following AIBD diagnosis. Participants reported high levels of depressive symptomatology and impairments to quality of life compared to other patient groups. The sample reported extremely high levels of body image disturbance, more so than other patients with disfiguring diseases or injury. Correlation analyses revealed significant relationships between body image variables and quality of life, even after controlling for depression. CONCLUSIONS: Current treatment guidelines for AIBDs focus primarily on the management of disease flares and the consequences of immunosuppression, without consideration of the psychosocial consequences of the disease. The current study underscores the need for mental health support for patients with AIBDs.

6.
Front Microbiol ; 13: 909396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836425

RESUMO

The last outbreak of classical swine fever (CSF) in the UK occurred in 2000. A total of 16 domestic pig holdings in the East Anglia region were confirmed as infected over a 3-month period. Obtaining viral genome sequences has since become easier and more cost-effective and has accordingly been applied to trace viral transmission events for a variety of viruses. The rate of genetic evolution varies for different viruses and is influenced by different transmission events, which will vary according to the epidemiology of an outbreak. To examine if genetic changes over the course of any future CSF outbreak would occur to supplement epidemiological investigations and help to track virus movements, the E2 gene and full genome of the virus present in archived tonsil samples from 14 of these infected premises were sequenced. Insufficient changes occurred in the full E2 gene to discriminate between the viruses from the different premises. In contrast, between 5 and 14 nucleotide changes were detected between the genome sequence of the virus from the presumed index case and the sequences from the other 13 infected premises. Phylogenetic analysis of these full CSFV genome sequences identified clusters of closely related viruses that allowed to corroborate some of the transmission pathways inferred by epidemiological investigations at the time. However, other sequences were more distinct and raised questions about the virus transmission routes previously implicated. We are thus confident that in future outbreaks, real-time monitoring of the outbreak via full genome sequencing will be beneficial.

7.
Transbound Emerg Dis ; 69(4): 1698-1706, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35353447

RESUMO

Border disease (BD) was first reported in 1959 in lambs from the border region of England and Wales. The causative virus (BD virus; BDV) has since been identified in several other ruminant species and pigs. The virus is prevalent in sheep flocks of UK, Europe and USA and has potential to inflict substantial economic losses. Natural BDV infection of pigs was first reported in the UK in 1992 from pigs with haemorrhagic lesions and more recently from healthy pigs in Spain and Japan. Here, a persistent problem of poor growth and anaemia in a small proportion of growing pigs on a mixed pig and sheep holding was investigated and tissues were tested in a pan viral microarray. The microarray detected BDV RNA in several tissues which was further confirmed by sequencing, specific BDV PCR and immunohistochemistry. Phylogenetically, the virus clustered with other BDVs in the sub-genotype 1b. This investigation highlights likely interspecies transmission of pestiviruses and their impact on pestivirus detection and eradication programs.


Assuntos
Doença da Fronteira , Vírus da Doença da Fronteira , Pestivirus , Doenças dos Ovinos , Doenças dos Suínos , Animais , Doença da Fronteira/epidemiologia , Vírus da Doença da Fronteira/genética , Surtos de Doenças/veterinária , Genótipo , Pestivirus/genética , Ovinos , Doenças dos Ovinos/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia
8.
Sci Rep ; 11(1): 20595, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663881

RESUMO

The delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, countermeasure that would expand the current portfolio of SARS-CoV-2 intervention strategies beyond the conventional approaches of vaccine, antibody, and antiviral therapeutics. Employing custom biological light units, that incorporate optically engineered light-emitting diode (LED) arrays, we harnessed monochromatic wavelengths of light for uniform delivery across biological surfaces. We demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues tolerated high doses of a narrow spectral band of visible light centered at a peak wavelength of 425 nm. We extended these studies to Vero E6 cells to understand how light may influence the viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. The exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited infection and replication of cell-associated SARS-CoV-2 by > 99% 24 h post-infection after a single five-minute light exposure. Moreover, the 425 nm blue light inactivated cell-free betacoronaviruses including SARS-CoV-1, MERS-CoV, and SARS-CoV-2 up to 99.99% in a dose-dependent manner. Importantly, clinically applicable doses of 425 nm blue light dramatically inhibited SARS-CoV-2 infection and replication in primary human 3D tracheal/bronchial tissue. Safe doses of visible light should be considered part of the strategic portfolio for the development of SARS-CoV-2 therapeutic countermeasures to mitigate coronavirus disease 2019 (COVID-19).


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Luz , SARS-CoV-2 , Traqueia/efeitos da radiação , Replicação Viral/efeitos da radiação , Adulto , Animais , Antivirais/farmacologia , Brônquios , Calibragem , Sistema Livre de Células , Chlorocebus aethiops , Epitélio/patologia , Feminino , Humanos , Mucosa Respiratória/efeitos da radiação , Traqueia/virologia , Células Vero
9.
Pathogens ; 10(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207265

RESUMO

The understanding of the pathogenic mechanisms and the clinicopathological forms caused by currently circulating African swine fever virus (ASFV) isolates is incomplete. So far, most of the studies have been focused on isolates classified within genotypes I and II, the only genotypes that have circulated outside of Africa. However, less is known about the clinical presentations and lesions induced by isolates belonging to the other twenty-two genotypes. Therefore, the early clinicopathological identification of disease outbreaks caused by isolates belonging to, as yet, not well-characterised ASFV genotypes may be compromised, which might cause a delay in the implementation of control measures to halt the virus spread. To improve the pathological characterisation of disease caused by diverse isolates, we have refined the macroscopic and histopathological evaluation protocols to standardise the scoring of lesions. Domestic pigs were inoculated intranasally with different doses (high, medium and low) of ASFV isolate Ken05/Tk1 (genotype X). To complement previous studies, the distribution and severity of macroscopic and histopathological lesions, along with the amount and distribution of viral antigen in tissues, were characterised by applying the new scoring protocols. The intranasal inoculation of domestic pigs with high doses of the Ken05/Tk1 isolate induced acute forms of ASF in most of the animals. Inoculation with medium doses mainly induced acute forms of disease. A less severe but longer clinical course, typical of subacute forms, characterised by the presence of more widespread and severe haemorrhages and oedema, was observed in one pig inoculated with the medium dose. The severity of vascular lesions (haemorrhages and oedema) induced by high and medium doses was not associated with the amount of virus antigen detected in tissues, therefore these might be attributed to indirect mechanisms not evaluated in the present study. The absence of clinical signs, lesions and detectable levels of virus genome or antigen in blood from the animals inoculated with the lowest dose ruled out the existence of possible asymptomatic carriers or persistently infected pigs, at least for the 21 days period of the study. The results corroborate the moderate virulence of the Ken05/Tk1 isolate, as well as its capacity to induce both the acute and, occasionally, subacute forms of ASF when high and medium doses were administered intranasally.

10.
J Virol Methods ; 295: 114203, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097940

RESUMO

Rapid and effective virus inactivation is an essential step for safe diagnostic testing and for research and vaccine development using infectious viruses. We characterised the reduction of African Swine Fever Virus (ASFV) infectivity using Virkon™ S (Lanxess) 1% w/v disinfectant, FACS™ Lysing buffer (BD), and AVL™ buffer (Qiagen), using porcine cell culture. No virus was detected following a 30 s 20:1 v/v mixing ratio of Virkon™ S 1% with high titre ASFV, supporting its effective use as a laboratory surface disinfectant. FACS™ Lysing and AVL™ buffers also inactivated ASFV, permitting safe removal of treated infected samples from high containment facilities.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/prevenção & controle , Animais , Indicadores e Reagentes , Laboratórios , Suínos , Inativação de Vírus
11.
Viruses ; 12(10)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036281

RESUMO

Bovine Pestiviruses A and B, formerly known as bovine viral diarrhoea viruses (BVDV)-1 and 2, respectively, are important pathogens of cattle worldwide, responsible for significant economic losses. Bovine viral diarrhoea control programmes are in effect in several high-income countries but less so in low- and middle-income countries where bovine pestiviruses are not considered in disease control programmes. However, bovine pestiviruses are genetically and antigenically diverse, which affects the efficiency of the control programmes. The emergence of atypical ruminant pestiviruses (Pestivirus H or BVDV-3) from various parts of the world and the detection of Pestivirus D (border disease virus) in cattle highlights the challenge that pestiviruses continue to pose to control measures including the development of vaccines with improved cross-protective potential and enhanced diagnostics. This review examines the effect of bovine pestivirus diversity and emergence of atypical pestiviruses in disease control by vaccination and diagnosis.


Assuntos
Doenças dos Bovinos/prevenção & controle , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Vírus da Diarreia Viral Bovina Tipo 2/imunologia , Infecções por Pestivirus/prevenção & controle , Vacinação/veterinária , Animais , Antígenos Virais/imunologia , Bovinos , Doenças dos Bovinos/diagnóstico , Proteção Cruzada/imunologia , Vírus da Diarreia Viral Bovina Tipo 1/isolamento & purificação , Vírus da Diarreia Viral Bovina Tipo 2/isolamento & purificação , Infecções por Pestivirus/veterinária , Vacinas Virais/imunologia
12.
Sci Rep ; 10(1): 8951, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488046

RESUMO

African swine fever virus (ASFV) causes a lethal, haemorrhagic disease in domestic swine that threatens pig production across the globe. Unlike domestic pigs, warthogs, which are wildlife hosts of the virus, do not succumb to the lethal effects of infection. There are three amino acid differences between the sequence of the warthog and domestic pig RELA protein; a subunit of the NF-κB transcription factor that plays a key role in regulating the immune response to infections. Domestic pigs with all 3 or 2 of the amino acids from the warthog RELA orthologue have been generated by gene editing. To assess if these variations confer resilience to ASF we established an intranasal challenge model with a moderately virulent ASFV. No difference in clinical, virological or pathological parameters were observed in domestic pigs with the 2 amino acid substitution. Domestic pigs with all 3 amino acids found in warthog RELA were not resilient to ASF but a delay in onset of clinical signs and less viral DNA in blood samples and nasal secretions was observed in some animals. Inclusion of these and additional warthog genetic traits into domestic pigs may be one way to assist in combating the devastating impact of ASFV.


Assuntos
Febre Suína Africana/prevenção & controle , Ligases/genética , NF-kappa B/genética , Febre Suína Africana/genética , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Animais Selvagens/genética , Ligases/metabolismo , NF-kappa B/metabolismo , Engenharia de Proteínas/métodos , Sus scrofa/genética , Suínos
13.
J Virol Methods ; 275: 113704, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518634

RESUMO

Applying palindromic nucleotide substitutions (PNS) method, variable loci of the internal ribosome entry site (IRES) secondary structure in the 5' untranslated region (UTR) of Border disease virus sequences were analysed allowing their allocation into ten IRES classes within the species. Sequence characteristics of Turkish and Chinese strains were highly divergent from other genogroups, indicating geographic segregation and micro-evolutive steps within the species. Observed heterogeneity in the BDV species has to be considered for potential implications on diagnostic tests, control and preventive measures.


Assuntos
Vírus da Doença da Fronteira/classificação , Vírus da Doença da Fronteira/genética , Genoma Viral , Sítios Internos de Entrada Ribossomal , Filogenia , Regiões 5' não Traduzidas/genética , Animais , Sequências Repetidas Invertidas , Conformação de Ácido Nucleico , RNA Viral/química
14.
Vaccine ; 36(30): 4494-4500, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29907483

RESUMO

Atypical ruminant pestiviruses are closely related to the two bovine viral diarrhoea virus (BVDV) species, BVDV-1 and BVDV-2. While there is evidence of cross-protective immune responses between BVDV-1 and BVDV-2, despite antigenic differences, there is little information on the antigenic cross-reactivity with atypical ruminant pestiviruses. The aim of this study was therefore to assess the specificity of antibody and T cell responses induced by experimental infection of calves with BVDV-1 strain Ho916, Th/04_KhonKaen (TKK), an Asiatic atypical ruminant pestivirus, or co-infection with both viruses. Homologous virus neutralization was observed in sera from both single virus infected and co-infected groups, while cross-neutralization was only observed in the TKK infected group. T cell IFN-γ responses to both viruses were observed in the TKK infected animals, whereas Ho916 infected calves responded better to homologous virus. Specifically, IFN-γ responses to viral non-structural protein, NS3, were observed in all infected groups while responses to viral glycoprotein, E2, were virus-specific. Broader antigen-specific cytokine responses were observed with similar trends between inoculation groups and virus species. The limited T cell and antibody immune reactivity of Ho916 inoculated animals to TKK suggests that animals vaccinated with current BVDV-1-based vaccines may not be protected against atypical ruminant pestiviruses.


Assuntos
Imunidade Adaptativa/imunologia , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Pestivirus/imunologia , Ruminantes/virologia , Animais , Anticorpos Antivirais/imunologia , Bovinos , Células Cultivadas , Reações Cruzadas
15.
Front Vet Sci ; 5: 24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29536016

RESUMO

The objective of this study was to develop a bovine viral diarrhea virus type 2 (BVDV-2) challenge model suitable for evaluation of efficacy of BVDV vaccines; a model that mimics natural infection and induces clear leukopenia and viremia. Clinical, hematological and virological parameters were evaluated after infection of two age groups of calves (3 and 9 months) with two BVDV-2 strains (1362727 and 502643). Calves became pyrexic between 8 and 9 days post inoculation and exhibited symptoms, such as nasal discharge, mild depression, cough, and inappetence. Leukopenia with associated lymphopenia and neutropenia was evident in all groups with lowest leukocyte and lymphocyte counts reached 8 dpi and granulocyte counts between 11 and 16 dpi, dependent on the strain and age of the calves. A more severe thrombocytopenia was seen in those animals inoculated with strain 1362727. Leukocyte and nasal swab samples were positive by virus isolation, as early as 3 dpi and 2 dpi respectively, independent of the inocula used. All calves seroconverted with high levels of BVDV-2 neutralizing antibodies. BVDV RNA was evident as late as 90 dpi and provides the first evidence of the presence of replicating virus long after recovery from BVDV-2 experimental infection. In summary, moderate disease can be induced after experimental infection of calves with a low titer of virulent BVDV-2, with leukopenia, thrombocytopenia, viremia, and virus shedding. These strains represent an attractive model to assess the protective efficacy of existing and new vaccines against BVDV-2.

16.
Sci Rep ; 7: 44438, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317844

RESUMO

Worldwide amphibian populations are declining due to habitat loss, disease and pollution. Vulnerability to environmental contaminants such as pesticides will be dependent on the species, the sensitivity of the ontogenic life stage and hence the timing of exposure and the exposure pathway. Herein we investigated the biochemical tissue 'fingerprint' in spawn and early-stage tadpoles of the Common frog, Rana temporaria, using attenuated total reflection-Fourier-transform infrared (ATR-FTIR) spectroscopy with the objective of observing differences in the biochemical constituents of the respective amphibian tissues due to varying water quality in urban and agricultural ponds. Our results demonstrate that levels of stress (marked by biochemical constituents such as glycogen that are involved in compensatory metabolic mechanisms) can be observed in tadpoles present in the pond most impacted by pollution (nutrients and pesticides), but large annual variability masked any inter-site differences in the frog spawn. ATR-FTIR spectroscopy is capable of detecting differences in tadpoles that are present in selected ponds with different levels of environmental perturbation and thus serves as a rapid and cost effective tool in assessing stress-related effects of pollution in a vulnerable class of organism.


Assuntos
Larva/efeitos dos fármacos , Praguicidas/toxicidade , Rana temporaria/metabolismo , Poluentes Químicos da Água/toxicidade , Zigoto/efeitos dos fármacos , Proteínas de Anfíbios/análise , Proteínas de Anfíbios/metabolismo , Animais , Glicogênio/análise , Glicogênio/biossíntese , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lipídeos/análise , Lagoas/química , Rana temporaria/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Qualidade da Água , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
17.
Vet Microbiol ; 209: 66-74, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28228336

RESUMO

PRRS control is hampered by the inadequacies of existing vaccines to combat the extreme diversity of circulating viruses. Since immune clearance of PRRSV infection may not be dependent on the development of neutralising antibodies and the identification of broadly-neutralising antibody epitopes have proven elusive, we hypothesised that conserved T cell antigens represent potential candidates for development of a novel PRRS vaccine. Previously we had identified the M and NSP5 proteins as well-conserved targets of polyfunctional CD8 and CD4 T cells. To assess their vaccine potential, peptides representing M and NSP5 were encapsulated in hydrophobically-modified chitosan particles adjuvanted by incorporation of a synthetic multi-TLR2/TLR7 agonist and coated with a model B cell PRRSV antigen. For comparison, empty particles and adjuvanted particles encapsulating inactivated PRRSV-1 were prepared. Vaccination with the particulate formulations induced antigen-specific antibody responses, which were most pronounced following booster immunisation. M and NSP5-specific CD4, but not CD8, T cell IFN-γ reactivity was measurable following the booster immunisation in a proportion of animals vaccinated with peptide-loaded particles. Upon challenge, CD4 and CD8 T cell reactivity was detected in all groups, with the greatest responses being detected in the peptide vaccinated group but with limited evidence of an enhanced control of viraemia. Analysis of the lungs during the resolution of infection showed significant M/NSP5 specific IFN-γ responses from CD8 rather than CD4 T cells. Vaccine primed CD8 T cell responses may therefore be required for protection and future work should focus on enhancing the cross-presentation of M/NSP5 to CD8 T cells.


Assuntos
Antígenos Virais/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Linfócitos T/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , Quitosana/química , Peptídeos/administração & dosagem , Peptídeos/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos , Vacinas Virais/química , Vacinas Virais/normas
18.
Aquat Toxicol ; 178: 8-18, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27450236

RESUMO

Amphibians are regarded as sensitive sentinels of environmental pollution due to their permeable skin and complex life cycle, which usually involves reproduction and development in the aquatic environment. Fungicides are widely applied agrochemicals and have been associated with developmental defects in amphibians; thus, it is important to determine chronic effects of environmentally-relevant concentrations of such contaminants in target cells. Infrared (IR) spectroscopy has been employed to signature the biological effects of environmental contaminants through extracting key features in IR spectra with chemometric methods. Herein, the Xenopus laevis (A6) cell line was exposed to low concentrations of carbendazim (a benzimidazole fungicide) or flusilazole (a triazole fungicide) either singly or as a binary mixture. Cells were then examined using attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy coupled with multivariate analysis. Results indicate significant changes in the IR spectra of cells induced by both agents at all concentrations following single exposures, primarily in regions associated with protein and phospholipids. Distinct differences were apparent in the IR spectra of cells exposed to carbendazim and those exposed to flusilazole, suggesting different mechanisms of action. Exposure to binary mixtures of carbendazim and flusilazole also induced significant spectral alterations, again in regions associated with phospholipids and proteins, but also in regions associated with DNA and carbohydrates. Overall these findings demonstrate that IR spectroscopy is a sensitive technique for examining the effects of environmentally-relevant levels of fungicides at the cellular level. The combination of IR spectroscopy with the A6 cell line could serve as a useful model to identify agents that might threaten amphibian health in a rapid and high throughput manner.


Assuntos
Monitoramento Ambiental/métodos , Células Epiteliais/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Benzimidazóis/toxicidade , Biomarcadores/metabolismo , Carbamatos/toxicidade , Técnicas de Cultura de Células , Linhagem Celular , Análise por Conglomerados , Relação Dose-Resposta a Droga , Monitoramento Ambiental/instrumentação , Células Epiteliais/metabolismo , Humanos , Análise Multivariada , Silanos/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Triazóis/toxicidade , Proteínas de Xenopus/metabolismo , Xenopus laevis
20.
Environ Pollut ; 213: 322-337, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26925755

RESUMO

Amphibians are undergoing large population declines in many regions around the world. As environmental pollution from both agricultural and urban sources has been implicated in such declines, there is a need for a biomonitoring approach to study potential impacts on this vulnerable class of organism. This study assessed the use of infrared (IR) spectroscopy as a tool to detect changes in several tissues (liver, muscle, kidney, heart and skin) of late-stage common frog (Rana temporaria) tadpoles collected from ponds with differing water quality. Small differences in spectral signatures were revealed between a rural agricultural pond and an urban pond receiving wastewater and landfill run-off; these were limited to the liver and heart, although large differences in body size were apparent, surprisingly with tadpoles from the urban site larger than those from the rural site. Large differences in liver spectra were found between tadpoles from the pesticide and nutrient impacted pond compared to the rural agricultural pond, particularly in regions associated with lipids. Liver mass and hepatosomatic indices were found to be significantly increased in tadpoles from the site impacted by pesticides and trace organic chemicals, suggestive of exposure to environmental contamination. Significant alterations were also found in muscle tissue between tadpoles from these two ponds in regions associated with glycogen, potentially indicative of a stress response. This study highlights the use of IR spectroscopy, a low-cost, rapid and reagent-free technique in the biomonitoring of a class of organisms susceptible to environmental degradation.


Assuntos
Monitoramento Ambiental/métodos , Rana temporaria , Espectroscopia de Infravermelho com Transformada de Fourier , Agricultura , Animais , Larva/efeitos dos fármacos , Fígado/efeitos dos fármacos , Músculos/efeitos dos fármacos , Praguicidas/toxicidade , Lagoas/análise , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA