Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1341108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784665

RESUMO

Introduction: Normothermic ex vivo kidney perfusion (NEVKP) is designed to replicate physiological conditions to improve graft outcomes. A comparison of the impact of hypothermic and normothermic preservation techniques on graft quality was performed by lipidomic profiling using solid-phase microextraction (SPME) chemical biopsy as a minimally invasive sampling approach. Methods: Direct kidney sampling was conducted using SPME probes coated with a mixed-mode extraction phase in a porcine autotransplantation model of the renal donor after cardiac death, comparing three preservation methods: static cold storage (SCS), NEVKP, and hypothermic machine perfusion (HMP). The lipidomic analysis was done using ultra-high-performance liquid chromatography coupled with a Q-Exactive Focus Orbitrap mass spectrometer. Results: Chemometric analysis showed that the NEVLP group was separated from SCS and HMP groups. Further in-depth analyses indicated significantly (p < 0.05, VIP > 1) higher levels of acylcarnitines, phosphocholines, ether-linked and longer-chain phosphoethanolamines, triacylglycerols and most lysophosphocholines and lysophosphoethanolamines in the hypothermic preservation group. The results showed that the preservation temperature has a more significant impact on the lipidomic profile of the kidney than the preservation method's mechanical characteristics. Conclusion: Higher levels of lipids detected in the hypothermic preservation group may be related to ischemia-reperfusion injury, mitochondrial dysfunction, pro-inflammatory effect, and oxidative stress. Obtained results suggest the NEVKP method's beneficial effect on graft function and confirm that SPME chemical biopsy enables low-invasive and repeated sampling of the same tissue, allowing tracking alterations in the graft throughout the entire transplantation procedure.

2.
Transl Res ; 267: 79-90, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38052298

RESUMO

Transplant centers are currently facing a lack of tools to ensure adequate evaluation of the quality of the available organs, as well as a significant shortage of kidney donors. Therefore, efforts are being made to facilitate the effective use of available organs and expand the donor pool, particularly with expanded criteria donors. Fulfilling a need, we aim to present an innovative analytical method based on solid-phase microextraction (SPME) - chemical biopsy. In order to track changes affecting the organ throughout the entire transplant procedure, porcine kidneys were subjected to multiple samplings at various time points. The application of small-diameter SPME probes assured the minimal invasiveness of the procedure. Porcine model kidney autotransplantation was executed for the purpose of simulating two types of donor scenarios: donors with a beating heart (HBD) and donors after cardiac death (DCD). All renal grafts were exposed to continuous normothermic ex vivo perfusion. Following metabolomic and lipidomic profiling using high-performance liquid chromatography coupled to a mass spectrometer, we observed differences in the profiles of HBD and DCD kidneys. The alterations were predominantly related to energy and glucose metabolism, and differences in the levels of essential amino acids, purine nucleosides, lysophosphocholines, phosphoethanolamines, and triacylglycerols were noticed. Our results indicate the potential of implementing chemical biopsy in the evaluation of graft quality and monitoring of renal function during perfusion.


Assuntos
Rim , Lipidômica , Suínos , Animais , Humanos , Doadores de Tecidos , Morte , Perfusão/métodos , Sobrevivência de Enxerto
3.
Molecules ; 26(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920347

RESUMO

Bladder cancer (BC) is a common malignancy of the urinary system and a leading cause of death worldwide. In this work, untargeted metabolomic profiling of biological fluids is presented as a non-invasive tool for bladder cancer biomarker discovery as a first step towards developing superior methods for detection, treatment, and prevention well as to further our current understanding of this disease. In this study, urine samples from 24 healthy volunteers and 24 BC patients were subjected to metabolomic profiling using high throughput solid-phase microextraction (SPME) in thin-film format and reversed-phase high-performance liquid chromatography coupled with a Q Exactive Focus Orbitrap mass spectrometer. The chemometric analysis enabled the selection of metabolites contributing to the observed separation of BC patients from the control group. Relevant differences were demonstrated for phenylalanine metabolism compounds, i.e., benzoic acid, hippuric acid, and 4-hydroxycinnamic acid. Furthermore, compounds involved in the metabolism of histidine, beta-alanine, and glycerophospholipids were also identified. Thin-film SPME can be efficiently used as an alternative approach to other traditional urine sample preparation methods, demonstrating the SPME technique as a simple and efficient tool for urinary metabolomics research. Moreover, this study's results may support a better understanding of bladder cancer development and progression mechanisms.


Assuntos
Metaboloma , Metabolômica/métodos , Neoplasias da Bexiga Urinária/urina , Idoso , Ácido Benzoico/urina , Estudos de Casos e Controles , Cromatografia Líquida , Ácidos Cumáricos/urina , Feminino , Glicerofosfolipídeos/urina , Hipuratos/urina , Histidina/urina , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Fenilalanina/metabolismo , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia , beta-Alanina/urina
4.
J Vis Exp ; (160)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32628165

RESUMO

Kidney transplantation is a life-saving treatment for a large number of people with end-stage renal dysfunction worldwide. The procedure is associated with an increased survival rate and greater quality of patient's life when compared to conventional dialysis. Regrettably, transplantology suffers from a lack of reliable methods for organ quality assessment. Standard diagnostic techniques are limited to macroscopic appearance inspection or invasive tissue biopsy, which do not provide comprehensive information about the graft. The proposed protocol aims to introduce solid phase microextraction (SPME) as an ideal analytical method for comprehensive metabolomics and lipidomic analysis of all low molecular compounds present in kidneys allocated for transplantation. The small size of the SPME probe enables performance of a chemical biopsy, which enables extraction of metabolites directly from the organ without any tissue collection. The minimum invasiveness of the method permits execution of multiple analyses over time: directly after organ harvesting, during its preservation, and immediately after revascularization at the recipient's body. It is hypothesized that the combination of this novel sampling method with a high-resolution mass spectrometer will allow for discrimination of a set of characteristic compounds that could serve as biological markers of graft quality and indicators of possible development of organ dysfunction.


Assuntos
Transplante de Rim/normas , Metabolômica , Animais , Biópsia , Cromatografia Líquida , Lipidômica , Espectrometria de Massas , Análise de Componente Principal , Controle de Qualidade , Microextração em Fase Sólida
5.
Metabolites ; 10(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560547

RESUMO

Given that the extent to which genetics alters the metabolomic profile of tissues is still poorly understood, the current study aimed to characterize and investigate the metabolite profiles of brain, liver, kidney and skeletal muscle of two common mouse inbred strains (BALB/c, C57BL/6) and one outbred stock (CD1) for strain-specific differences. Male mice (n = 15) at the age of 12 weeks were used: BALB/c (n = 5), C57BL/6 (n = 5) and CD1 (n = 5). Solid phase microextraction (SPME) was applied for the extraction of analytes from the tissues. SPME fibers (approximately 0.2 mm in diameter) coated with a biocompatible sorbent (4 mm length of hydrophilic-lipophilic balanced particles) were inserted into each organ immediately after euthanasia. Samples were analyzed using liquid chromatography coupled to a Q-Exactive Focus Orbitrap mass spectrometer. Distinct interstrain differences in the metabolomic patterns of brain and liver tissue were revealed. The metabolome of kidney and muscle tissue in BALB/c mice differed greatly from C57BL/6 and CD1 strains. The main compounds differentiating all the targeted organs were alpha-amino acids, purine nucleotides and fatty acid esters. The results of the study indicate that the baseline metabolome of organs, as well as different metabolic pathways, vary widely among general-purpose models of laboratory mice commonly used in biomedical research.

6.
J Sep Sci ; 43(9-10): 1867-1878, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32068348

RESUMO

The limiting factor in conventional quality assessments of transplanted organs, namely the invasiveness of tissue sample collection, has prompted much research on the field of transplantology to focus on the development of alternative evaluation methods of organ quality. In the present project, we undertake the challenge to address the need for a new analytical solution for graft quality assessments by using a novel metabolomic diagnostic protocol based on low-invasive solid-phase microextraction. Solid-phase microextraction probes of ca. 0.2 mm coated with 4 mm long mixed-mode extraction phase were inserted into rabbit kidneys immediately following euthanasia and after 2, 4, 6, and 21 h of preservation. Liquid chromatography-mass spectrometry analysis of the extracts was performed with the use of a reversed phase column and a Q-Exactive Focus mass spectrometer operated in positive ionization mode. Statistical analysis of significantly changing compounds revealed metabolic profile changes in kidneys induced by ischemia and oxidative stress as a function of the duration of cold storage. The most pronounced alterations were reflected in levels of essential amino acids and purine nucleosides. Our findings demonstrate that the proposed approach may be successfully used to monitor changes in the metabolic profile of organs over time of preservation.


Assuntos
Isquemia/metabolismo , Rim/metabolismo , Microextração em Fase Sólida , Aminoácidos/análise , Animais , Cromatografia Líquida , Isquemia/patologia , Rim/patologia , Espectrometria de Massas , Estresse Oxidativo , Nucleosídeos de Purina/análise , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA