Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1866(6): 130132, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307509

RESUMO

BACKGROUND: The interaction of N-terminal extension of the myosin A1 essential light chain (A1 ELC) with actin is receiving increasing attention as a target in utilizing synthetic A1 ELC N-terminal-derived peptides in cardiac dysfunction therapy. METHODS: To elucidate the mechanism by which these peptides regulate actin-myosin interaction, here we have investigated their effects on the myosin subfragment 1 (S1)-induced polymerization of G-actin. RESULTS: The MLCFpep and MLCSpep peptides spanning the 3-12 of A1 ELC sequences from fast and slow skeletal muscle, respectively, increased the rate of actin polymerization not only by S1(A2) but also the rate of S1(A1)-induced actin polymerization, suggesting that they did not interfere with the direct binding of A1 ELC with actin. The efficiency of actin polymerization in the presence of the N-terminal ELC peptides depended on their sequence. Substitution of aspartic acid for neutral asparagine at position 5 of MLCFpep dramatically enhanced its ability to stimulate S1-induced polymerization and enabled it to initiate polymerization of G-actin in the absence of S1. CONCLUSIONS: These and other results presented in this work suggest that the modulation of myosin motor activity by N-terminal ELC peptides is exerted through a change in actin filament conformation rather than through blocking the A1 ELC-actin interaction. GENERAL SIGNIFICANCE: The results imply the possibility of enhancing therapeutic effects of these peptides by modifications of their sequence.


Assuntos
Actinas , Cadeias Leves de Miosina , Actinas/metabolismo , Músculo Esquelético/metabolismo , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo
2.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652657

RESUMO

Formation of stable actin filaments, critically important for actin functions, is determined by the ionic strength of the solution. However, not much is known about the elements of the actin fold involved in ionic-strength-dependent filament stabilization. In this work, F-actin was destabilized by Cu2+ binding to Cys374, and the effects of solvent conditions on the dynamic properties of F-actin were correlated with the involvement of Segment 227-235 in filament stabilization. The results of our work show that the presence of Mg2+ at the high-affinity cation binding site of Cu-modified actin polymerized with MgCl2 strongly enhances the rate of filament subunit exchange and promotes the filament instability. In the presence of 0.1 M KCl, the filament subunit exchange was 2-3-fold lower than that in the MgCl2-polymerized F-actin. This effect correlates with the reduced accessibility of the D-loop and Segment 227-235 on opposite filament strands, consistent with an ionic-strength-dependent conformational change that modulates involvement of Segment 227-235 in stabilization of the intermonomer interface. KCl may restrict the mobility of the α-helix encompassing part of Segment 227-235 and/or be bound to Asp236 at the boundary of Segment 227-235. These results provide experimental evidence for the involvement of Segment 227-235 in salt-induced stabilization of contacts within the actin filament and suggest that they can be weakened by mutations characteristic of actin-associated myopathies.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Cobre/química , Cloreto de Magnésio/química , Doenças Musculares , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Cobre/metabolismo , Cloreto de Magnésio/metabolismo , Coelhos
3.
J Mol Biol ; 387(4): 869-82, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19340945

RESUMO

The mechanism of salt-induced actin polymerization involves the energetically unfavorable nucleation step, followed by filament elongation by the addition of monomers. The use of a bifunctional cross-linker, N,N'-(1,4-phenylene)dimaleimide, revealed rapid formation of the so-called lower dimers (LD) in which actin monomers are arranged in an antiparallel fashion. The filament elongation phase is characterized by a gradual LD decay and an increase in the yield of "upper dimers" (UD) characteristic of F-actin. Here we have used 90 degrees light scattering, electron microscopy, and N, N'-(1,4-phenylene)dimaleimide cross-linking to reinvestigate relationships between changes in filament morphology, LD decay, and increase in the yield of UD during filament growth in a wide range of conditions influencing the rate of the nucleation reaction. The results show irregularity and instability of filaments at early stages of polymerization under all conditions used, and suggest that an earlier documented coassembling of LD with monomeric actin contributes to the initial disordering of the filaments rather than to the nucleation of polymerization. The effects of the type of G-actin-bound divalent cation (Ca2+/Mg2+), nucleotide (ATP/ADP), and polymerizing salt on the relation between changes in filament morphology and progress in G-actin-to-F-actin transformation show that ligand-dependent alterations in G-actin conformation determine not only the nucleation rate but also the kinetics of ordering of the filament structure in the elongation phase. The time courses of changes in the yield of UD suggest that filament maturation involves cooperative propagation of "proper" interprotomer contacts. Acceleration of this process by the initially bound MgATP supports the view that the filament-destabilizing conformational changes triggered by ATP hydrolysis and Pi liberation during polymerization are constrained by the intermolecular contacts established between MgATP monomers prior to ATP hydrolysis. An important role of contacts involving the DNase-I-binding loop and the C-terminus of actin is proposed.


Assuntos
Actinas/química , Actinas/metabolismo , Actinas/ultraestrutura , Trifosfato de Adenosina/metabolismo , Animais , Biopolímeros/química , Biopolímeros/metabolismo , Reagentes de Ligações Cruzadas , Desoxirribonuclease I/metabolismo , Dimerização , Hidrólise , Técnicas In Vitro , Cinética , Ligantes , Maleimidas , Microscopia Eletrônica de Transmissão , Conformação Proteica/efeitos dos fármacos , Coelhos , Sais/metabolismo , Sais/farmacologia
4.
Biophys J ; 88(4): 2883-96, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15665122

RESUMO

Proteolytic cleavage of actin between Gly(42) and Val(43) within its DNase-I-binding loop (D-loop) abolishes the ability of Ca-G-actin to spontaneously polymerize in the presence of KCl. Here we show that such modified actin is assembled into filaments, albeit at a lower rate than unmodified actin, by myosin subfragment 1 (S1) carrying the A1 essential light chain but not by S1(A2). S1 titration of pyrene-G-actin showed a diminished affinity of cleaved actin for S1, but this could be compensated for by using S1 in excess. The most significant effect of the cleavage, revealed by measuring the fluorescence of pyrene-actin and light-scattering intensities as a function of actin concentration at saturating concentrations of S1, is strong inhibition of association of G-actin-S1 complexes into oligomers. Measurements of the fluorescence of dansyl cadaverine attached to Gln(41) indicate substantial inhibition of the initial association of G-actin-S1 into longitudinal dimers. The data provide experimental evidence for the critical role of D-loop conformation in both longitudinal and lateral, cross-strand actin-actin contact formation in the nucleation reaction. Electron microscopic analysis of the changes in filament-length distribution during polymerization of actin by S1(A1) and S1(A2) suggests that the mechanism of S1-induced polymerization is not substantially different from the nucleation-elongation scheme of spontaneous actin polymerization.


Assuntos
Actinas/química , Cadaverina/análogos & derivados , Desoxirribonuclease I/química , Trifosfato de Adenosina/química , Animais , Biofísica/métodos , Cadaverina/química , Dimerização , Relação Dose-Resposta a Droga , Glicina/química , Cinética , Luz , Magnésio/química , Microscopia Eletrônica , Subfragmentos de Miosina/química , Faloidina/química , Polímeros/química , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Proteínas/química , Pirenos/química , Coelhos , Espalhamento de Radiação , Espectrometria de Fluorescência , Temperatura , Fatores de Tempo , Valina/química
5.
J Biol Chem ; 279(30): 31197-204, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15159400

RESUMO

Various lines of evidence suggest that communication between tropomyosin and myosin in the regulation of vertebrate-striated muscle contraction involves yet unknown changes in actin conformation. Possible participation of loop 38-52 in this communication has recently been questioned based on unimpaired Ca(2+) regulation of myosin interaction, in the presence of the tropomyosin-troponin complex, with actin cleaved by subtilisin between Met(47) and Gly(48). We have compared the effects of actin cleavage by subtilisin and by protease ECP32, between Gly(42) and Val(43), on its interaction with myosin S1 in the presence and absence of tropomyosin or tropomyosin-troponin. Both individual modifications reduced activation of S1 ATPase by actin to a similar extent. The effect of ECP cleavage, but not of subtilisin cleavage, was partially reversed by stabilization of interprotomer contacts with phalloidin, indicating different pathways of signal transmission from the N- and C-terminal parts of loop 38-52 to myosin binding sites. ECP cleavage diminished the affinity to tropomyosin and reduced its inhibition of acto-S1 ATPase at low S1 concentrations, but increased the tropomyosin-mediated cooperative enhancement of the ATPase by S1 binding to actin. These effects were reversed by phalloidin. Subtilisin-cleaved actin more closely resembled unmodified actin than the ECP-modified actin. Limited proteolysis of the modified and unmodified F-actins revealed an allosteric effect of ECP cleavage on the conformation of the actin subdomain 4 region that is presumably involved in tropomyosin binding. Our results point to a possible role of the N-terminal part of loop 38-52 of actin in communication between tropomyosin and myosin through changes in actin structure.


Assuntos
Actinas/química , Actinas/metabolismo , Desoxirribonuclease I/metabolismo , Miosinas/metabolismo , Tropomiosina/metabolismo , Troponina/metabolismo , Animais , Sítios de Ligação , Endopeptidases/metabolismo , Técnicas In Vitro , Cinética , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Subfragmentos de Miosina/metabolismo , Faloidina/farmacologia , Coelhos , Transdução de Sinais , Subtilisina/metabolismo
6.
Biophys J ; 82(1 Pt 1): 321-34, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11751319

RESUMO

Effects of proteolytic modifications of the DNase-I-binding loop (residues 39-51) in subdomain 2 of actin on F-actin dynamics were investigated by measuring the rates of the polymer subunit exchange with the monomer pool at steady state and of ATP hydrolysis associated with it, and by determination of relative rate constants for monomer addition to and dissociation from the polymer ends. Cleavage of actin between Gly-42 and Val-43 by protease ECP32 resulted in enhancement of the turnover rate of polymer subunits by an order of magnitude or more, in contrast to less than a threefold increase produced by subtilisin cleavage between Met-47 and Gly-48. Probing the structure of the modified actins by limited digestion with trypsin revealed a correlation between the increased F-actin dynamics and a change in the conformation of subdomain 2, indicating a more open state of the filament subunits relative to intact F-actin. The cleavage with trypsin and steady-state ATPase were cooperatively inhibited by phalloidin, with half-maximal effects at phalloidin to actin molar ratio of 1:8 and full inhibition at a 1:1 ratio. The results support F-actin models in which only the N-terminal segment of loop 39-51 is involved in monomer-monomer contacts, and suggest a possibility of regulation of actin dynamics in the cell through allosteric effects on this segment of the actin polypeptide chain.


Assuntos
Actinas/metabolismo , Desoxirribonuclease I/metabolismo , Actinas/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Desoxirribonuclease I/química , Cinética , Luz , Microscopia Eletrônica , Músculo Esquelético/metabolismo , Fragmentos de Peptídeos/metabolismo , Mapeamento de Peptídeos , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas , Coelhos , Espalhamento de Radiação , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA