Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 39(10): 3915-3927, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885097

RESUMO

Improvements in vehicle safety require understanding of the neural systems that support the complex, dynamic task of real-world driving. We used functional near infrared spectroscopy (fNIRS) and pupilometry to quantify cortical and physiological responses during a realistic, simulated driving task in which vehicle dynamics were manipulated. Our results elucidate compensatory changes in driver behavior in response to changes in vehicle handling. We also describe associated neural and physiological responses under different levels of mental workload. The increased cortical activation we observed during the late phase of the experiment may indicate motor learning in prefrontal-parietal networks. Finally, relationships among cortical activation, steering control, and individual personality traits suggest that individual brain states and traits may be useful in predicting a driver's response to changes in vehicle dynamics. Results such as these will be useful for informing the design of automated safety systems that facilitate safe and supportive driver-car communication.


Assuntos
Condução de Veículo , Córtex Cerebral/fisiologia , Neuroimagem Funcional/métodos , Aprendizagem/fisiologia , Sistemas Homem-Máquina , Personalidade/fisiologia , Desempenho Psicomotor/fisiologia , Pupila/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Adulto Jovem
2.
Artigo em Inglês | MEDLINE | ID: mdl-25571160

RESUMO

The performance and practicality of a scale-based ballistocardiogram (BCG) system for hemodynamic monitoring of astronauts on extended space missions was demonstrated. The system consists of a modified electronic weighing scale fitted with foot bindings to mechanically couple the subject to the scale. This system was tested on a recent series of parabolic flights in which scale-based and accelerometry-based free-floating BCG of 10 subjects was measured in microgravity. The signal-to-noise ratio (SNR) of the scale-based BCG was, on average, a factor of 2.1 (6.3 dB) higher than the free-floating method, suggesting that the tethered scale approach might be more robust in terms of signal quality. Additionally, this approach enables practical BCG-based hemodynamic monitoring in fractional-g environments, and on small space vehicles such as NASA's upcoming Orion capsule. The scale-based results in microgravity were also compared to ground measurements (1 g), where there was an average 38.7 ms RJ interval reduction from ground to microgravity environments that is consistent across 9 of 10 subjects. This phenomenon is likely due to the transient increase in venous return, and consequent decrease in pre-ejection period, experienced during the microgravity time intervals.


Assuntos
Balistocardiografia/métodos , Postura , Ausência de Peso , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão Sinal-Ruído , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA