Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187718

RESUMO

Increases in drug consumption over time, also known as escalation, is a key behavioral component of substance use disorder (SUD) that is related to potential harm to users, such as overdose. Studying escalation also allows researchers to investigate the transition from casual drug use to more SUD-like drug use. Understanding the neurobiological systems that drive this transition will inform therapeutic treatments in the aim to prevent increases in drug use and the development of SUD. The kappa opioid receptor (KOR) system is typically known for its role in negative affect, which is commonly found in SUD as well. Furthermore, the KOR system has also been implicated in drug use and importantly, modulating the negative effects of drug use. However, the specific neuronal subpopulation expressing KOR involved has not been identified. Here, we first demonstrated that pharmacologically inhibiting KOR in the nucleus accumbens core (NAcC), as a whole, blocks cocaine escalation under long-access self-administration conditions. We then demonstrated that KOR expressed on ventral tegmental area (VTA) neurons but not NAcC neurons is sufficient for blocking cocaine escalation by utilizing a novel virally-mediated CRISPR-SaCas9 knock-out of the oprk1 gene. Together, this suggests that activation of KOR on VTA terminals in the NAcC drives the transition to the SUD-like phenotype of escalation of cocaine consumption.

2.
J Neurodev Disord ; 10(1): 12, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587625

RESUMO

BACKGROUND: Intranasal oxytocin (OT) has been shown to improve social communication functioning of individuals with autism spectrum disorder (ASD) and, thus, has received considerable interest as a potential ASD therapeutic agent. Although preclinical research indicates that OT modulates the functional output of the mesocorticolimbic dopamine system that processes rewards, no clinical brain imaging study to date has examined the effects of OT on this system using a reward processing paradigm. To address this, we used an incentive delay task to examine the effects of a single dose of intranasal OT, versus placebo (PLC), on neural responses to social and nonsocial rewards in children with ASD. METHODS: In this placebo-controlled double-blind study, 28 children and adolescents with ASD (age: M = 13.43 years, SD = 2.36) completed two fMRI scans, one after intranasal OT administration and one after PLC administration. During both scanning sessions, participants completed social and nonsocial incentive delay tasks. Task-based neural activation and connectivity were examined to assess the impact of OT relative to PLC on mesocorticolimbic brain responses to social and nonsocial reward anticipation and outcomes. RESULTS: Central analyses compared the OT and PLC conditions. During nonsocial reward anticipation, there was greater activation in the right nucleus accumbens (NAcc), left anterior cingulate cortex (ACC), bilateral orbital frontal cortex (OFC), left superior frontal cortex, and right frontal pole (FP) during the OT condition relative to PLC. Alternatively, during social reward anticipation and outcomes, there were no significant increases in brain activation during the OT condition relative to PLC. A Treatment Group × Reward Condition interaction revealed relatively greater activation in the right NAcc, right caudate nucleus, left ACC, and right OFC during nonsocial relative to social reward anticipation during the OT condition relative to PLC. Additionally, these analyses revealed greater activation during nonsocial reward outcomes during the OT condition relative to PLC in the right OFC and left FP. Finally, functional connectivity analyses generally revealed changes in frontostriatal connections during the OT condition relative to PLC in response to nonsocial, but not social, rewards. CONCLUSIONS: The effects of intranasal OT administration on mesocorticolimbic brain systems that process rewards in ASD were observable primarily during the processing of nonsocial incentive salience stimuli. These findings have implications for understanding the effects of OT on neural systems that process rewards, as well as for experimental trials of novel ASD treatments developed to ameliorate social communication impairments in ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Ocitocina/administração & dosagem , Recompensa , Percepção Social , Administração Intranasal , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Criança , Método Duplo-Cego , Reconhecimento Facial/efeitos dos fármacos , Reconhecimento Facial/fisiologia , Feminino , Humanos , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Ocitocina/metabolismo , Desempenho Psicomotor , Tempo de Reação , Saliva/química
3.
Int J Obes (Lond) ; 39(12): 1742-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26183405

RESUMO

BACKGROUND/OBJECTIVES: The rewarding value of palatable foods contributes to overconsumption, even in satiated subjects. Midbrain dopaminergic activity in response to reward-predicting environmental stimuli drives reward-seeking and motivated behavior for food rewards. This mesolimbic dopamine (DA) system is sensitive to changes in energy balance, yet it has thus far not been established whether reward signaling of DA neurons in vivo is under control of hormones that signal appetite and energy balance such as ghrelin and leptin. SUBJECTS/METHODS: We trained rats (n=11) on an operant task in which they could earn two different food rewards. We then implanted recording electrodes in the ventral tegmental area (VTA), and recorded from DA neurons during behavior. Subsequently, we assessed the effects of mild food restriction and pretreatment with the adipose tissue-derived anorexigenic hormone leptin or the orexigenic hormone ghrelin on VTA DA reward signaling. RESULTS: Animals showed an increase in performance following mild food restriction (P=0.002). Importantly, food-cue induced DA firing increased when animals were food restricted (P=0.02), but was significantly attenuated after leptin pretreatment (P=0.00). While ghrelin did affect baseline DA activity (P=0.025), it did not affect cue-induced firing (P⩾0.353). CONCLUSIONS: Metabolic signals, such as leptin, affect food seeking, a process that is dependent on the formation of cue-reward outcomes and involves midbrain DA signaling. These data show that food restriction engages the encoding of food cues by VTA DA neurons at a millisecond level and leptin suppresses this activity. This suggests that leptin is a key in linking metabolic information to reward signaling.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Grelina/metabolismo , Leptina/metabolismo , Obesidade/patologia , Área Tegmentar Ventral/patologia , Animais , Apetite , Sinais (Psicologia) , Modelos Animais de Doenças , Comportamento Alimentar , Masculino , Hipernutrição , Ratos , Ratos Wistar , Recompensa , Transdução de Sinais
4.
J Physiol ; 586(8): 2157-70, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18308824

RESUMO

Stress induces the release of the peptide corticotropin-releasing factor (CRF) into the ventral tegmental area (VTA), and also increases dopamine levels in brain regions receiving dense VTA input. Therefore, stress may activate the mesolimbic dopamine system in part through the actions of CRF in the VTA. Here, we explored the mechanism by which CRF affects VTA dopamine neuron firing. Using patch-clamp recordings from brain slices we first determined that the presence of I(h) is an excellent predictor of dopamine content in mice. We next showed that CRF dose-dependently increased VTA dopamine neuron firing, which was prevented by antagonism of the CRF receptor-1 (CRF-R1), and was mimicked by CRF-R1 agonists. Inhibition of the phospholipase C (PLC)-protein kinase C (PKC) signalling pathway, but not the cAMP-protein kinase A (PKA) signalling pathway, prevented the increase in dopamine neuron firing by CRF. Furthermore, the effect of CRF on VTA dopamine neurons was not attenuated by blockade of I(A), I(K(Ca)) or I(Kir), but was completely eliminated by inhibition of I(h). Although cAMP-dependent modulation of I(h) through changes in the voltage dependence of activation is well established, we surprisingly found that CRF, through a PKC-dependent mechanism, enhanced I(h) independent of changes in the voltage dependence of activation. Thus, our results demonstrated that CRF acted on the CRF-R1 to stimulate the PLC-PKC signalling pathway, which in turn enhanced I(h) to increase VTA dopamine neuron firing. These findings provide a cellular mechanism of the interaction between CRF and dopamine, which can be involved in promoting the avoidance of threatening stimuli, the pursuit of appetitive behaviours, as well as various psychiatric conditions.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Dopamina/metabolismo , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Área Tegmentar Ventral/fisiologia , Potenciais de Ação/fisiologia , Animais , Hormônio Liberador da Corticotropina/administração & dosagem , Relação Dose-Resposta a Droga , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp
5.
Peptides ; 21(9): 1361-7, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11072123

RESUMO

We have previously reported that the hormone insulin can modulate synaptic function of dopamine neurons. To evaluate whether insulin can alter performance of a task which is dependent on intact dopaminergic signaling, we tested rats in a five minute lick rate task, with a range of concentrations of sucrose or oil solutions. Rats received either ip (t -15 min) saline or the D2 receptor antagonist raclopride (50 microg/kg), and intraventricular (t -4 h) saline or insulin (5 mU). Although ineffective on its own, insulin combined with raclopride treatment resulted in significant suppression of sucrose lick rates compared to the saline/saline group. The overall results are consistent with our hypothesis that insulin may modify performance in tasks that are dependent on dopaminergic signaling.


Assuntos
Comportamento Animal/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Insulina/farmacologia , Racloprida/farmacologia , Animais , Dopamina/metabolismo , Interações Medicamentosas , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA