Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; : e17256, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180347

RESUMO

Sex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo-sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reported Danaus neo-sex chromosome within the tribe Danaini. We assembled and annotated genomes of Tirumala septentrionis (subtribe Danaina), Ideopsis similis (Amaurina), Idea leuconoe (Euploeina) and Lycorea halia (Itunina) and identified their Z-linked scaffolds. We found that the Danaus neo-sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to the Melitaea cinxia chromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 in I. similis and independent fusion occurred between ancestral Z chromosome and McChr12 in L. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex-biased genes in I. leuconoe and L. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female- and male-biased genes, respectively, which could have hypothetically facilitated fixation of the neo-sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo-Z chromosomes of both I. leuconoe and L. halia appear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species.

2.
Chromosome Res ; 31(4): 33, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37985497

RESUMO

Satellite DNA (satDNA) is a rapidly evolving class of tandem repeats, with some monomers being involved in centromere organization and function. To identify repeats associated with (peri)centromeric regions, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. Molecular cytogenetic and bioinformatic analyses revealed that two previously identified satellites, designated here as NkadSat01-77 and NfurSat01-348, are associated with (peri)centromeres only in one lineage of the Southern clade. NfurSat01-348 was, however, additionally detected outside centromeres in three members of the Coastal clade. We also identified a novel satDNA, NrubSat01-48, associated with (peri)centromeres in N. foerschi, N. guentheri, and N. rubripinnis. Our findings revealed fast turnover of satDNA associated with (peri)centromeres and different trends in their evolution in two clades of the genus Nothobranchius.


Assuntos
Fundulidae , Peixes Listrados , Animais , DNA Satélite , Peixes Listrados/genética , Fundulidae/genética , Centrômero/genética , Evolução Molecular
3.
J Fish Biol ; 103(6): 1501-1514, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661806

RESUMO

Using African annual killifishes of the genus Nothobranchius from temporary savannah pools with rapid karyotype and sex chromosome evolution, we analysed the chromosomal distribution of telomeric (TTAGGG)n repeat and Nfu-SatC satellite DNA (satDNA; isolated from Nothobranchius furzeri) in 15 species across the Nothobranchius killifish phylogeny, and with Fundulosoma thierryi as an out-group. Our fluorescence in situ hybridization experiments revealed that all analysed taxa share the presence of Nfu-SatC repeat but with diverse organization and distribution on chromosomes. Nfu-SatC landscape was similar in conspecific populations of Nothobranchius guentheri and Nothobranchius melanospilus but slightly-to-moderately differed between populations of Nothobranchius pienaari, and between closely related Nothobranchius kuhntae and Nothobranchius orthonotus. Inter-individual variability in Nfu-SatC patterns was found in N. orthonotus and Nothobranchius krysanovi. We revealed mostly no sex-linked patterns of studied repetitive DNA distribution. Only in Nothobranchius brieni, possessing multiple sex chromosomes, Nfu-SatC repeat occupied a substantial portion of the neo-Y chromosome, similarly as formerly found in the XY sex chromosome system of turquoise killifish N. furzeri and its sister species Nothobranchius kadleci-representatives not closely related to N. brieni. All studied species further shared patterns of expected telomeric repeats at the ends of all chromosomes and no additional interstitial telomeric sites. In summary, we revealed (i) the presence of conserved satDNA class in Nothobranchius clades (a rare pattern among ray-finned fishes); (ii) independent trajectories of Nothobranchius sex chromosome differentiation, with recurrent and convergent accumulation of Nfu-SatC on the Y chromosome in some species; and (iii) genus-wide shared tendency to loss of telomeric repeats during interchromosomal rearrangements. Collectively, our findings advance our understanding of genome structure, mechanisms of karyotype reshuffling, and sex chromosome differentiation in Nothobranchius killifishes from the genus-wide perspective.


Assuntos
Ciprinodontiformes , DNA Satélite , Animais , DNA Satélite/genética , Hibridização in Situ Fluorescente , Cariótipo , Fundulus heteroclitus
4.
Chromosome Res ; 30(4): 309-333, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208359

RESUMO

Homomorphic sex chromosomes and their turnover are common in teleosts. We investigated the evolution of nascent sex chromosomes in several populations of two sister species of African annual killifishes, Nothobranchius furzeri and N. kadleci, focusing on their under-studied repetitive landscape. We combined bioinformatic analyses of the repeatome with molecular cytogenetic techniques, including comparative genomic hybridization, fluorescence in situ hybridization with satellite sequences, ribosomal RNA genes (rDNA) and bacterial artificial chromosomes (BACs), and immunostaining of SYCP3 and MLH1 proteins to mark lateral elements of synaptonemal complexes and recombination sites, respectively. Both species share the same heteromorphic XY sex chromosome system, which thus evolved prior to their divergence. This was corroborated by sequence analysis of a putative master sex determining (MSD) gene gdf6Y in both species. Based on their divergence, differentiation of the XY sex chromosome pair started approximately 2 million years ago. In all populations, the gdf6Y gene mapped within a region rich in satellite DNA on the Y chromosome long arms. Despite their heteromorphism, X and Y chromosomes mostly pair regularly in meiosis, implying synaptic adjustment. In N. kadleci, Y-linked paracentric inversions like those previously reported in N. furzeri were detected. An inversion involving the MSD gene may suppress occasional recombination in the region, which we otherwise evidenced in the N. furzeri population MZCS-121 of the Limpopo clade lacking this inversion. Y chromosome centromeric repeats were reduced compared with the X chromosome and autosomes, which points to a role of relaxed meiotic drive in shaping the Y chromosome repeat landscape. We speculate that the recombination rate between sex chromosomes was reduced due to heterochiasmy. The observed differences between the repeat accumulations on the X and Y chromosomes probably result from high repeat turnover and may not relate closely to the divergence inferred from earlier SNP analyses.


Assuntos
Fundulidae , Peixes Listrados , Animais , Humanos , Peixes Listrados/genética , Fundulidae/genética , Hibridização in Situ Fluorescente , Hibridização Genômica Comparativa , Cromossomos Sexuais/genética , Cromossomo Y/genética , População Africana , Evolução Molecular
5.
Mol Phylogenet Evol ; 173: 107511, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577287

RESUMO

The family Buthidae represents an early-diverging and most species-rich lineage of extant scorpions, but its internal phylogenetic relationships are still poorly understood. The family is traditionally divided into six morpho-groups; however, the monophyly of some of them remains unclear. We combined multilocus sequence data with extensive taxon sampling to reconstruct the phylogenetic relationships among Buthidae and assess the validity of the morphology-based groupings. We recovered a monophyletic Buthus group as a sister clade to all the remaining Buthidae. We also found support for the monophyly of the Tityus group, but the remaining morpho-groups were recovered as para-/polyphyletic. Our results also suggest that some genera are in need of a taxonomic revision.


Assuntos
Aracnídeos , Escorpiões , Animais , Filogenia , Escorpiões/genética
6.
Mol Phylogenet Evol ; 134: 152-163, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30743063

RESUMO

Over time, mountain biota has undergone complex evolutionary histories that have left imprints on its genomic arrangement, geographical distribution and diversity of contemporary lineages. Knowledge on these biogeographical aspects still lags behind for invertebrates inhabiting the Alpine region. In the present study, we examined three scorpion species of the subgenus Euscorpius (Alpiscorpius) from the European Alps using cytogenetic and molecular phylogenetic approaches to determine the variation and population structure of extant lineages at both chromosome and genetic level, and to provide an insight into the species diversification histories. We detected considerable intraspecific variability in chromosome complements and localization of the 18S rDNA loci in all studied species. Such chromosome differences were noticeable as the existence of three [in E. (A.) alpha and E. (A.) germanus] or four [in E. (A.) gamma] range-restricted karyotypic races. These races differed from one another either by 2n [in E. (A.) alpha 2n = 54, 60, 90; in E. (A.) gamma 2n = 58, 60, 88, 86-92], or by the karyotypic formula [in E. (A.) germanus 2n = 34m + 12sm; 36m + 10sm; 42m + 4sm]. Using mitochondrial (16S rRNA, COI) and nuclear (28S rDNA) genetic markers, we examined genetic variation and reconstructed phylogenetic relationships among the karyotypic races. Both approaches provided evidence for the existence of ten deeply divergent lineages exhibiting the features of local endemics and indicating the presence of cryptic species. Molecular dating analyses suggest that these lineages diversified during the Plio-Pleistocene and this process was presumably accompanied by dynamic structural changes in the genome organization.


Assuntos
Cromossomos/genética , Evolução Molecular , Variação Genética , Escorpiões/genética , Alelos , Animais , DNA Ribossômico/genética , Genoma , Geografia , Cariotipagem , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA