Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Microbiol Spectr ; : e0048624, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916317

RESUMO

Staphylococcus aureus is a leading cause of healthcare-associated infections globally. Vancomycin-resistant S. aureus (VRSA), those with high-level resistance [minimum inhibitory concentration (MIC) of 16-32 µg/mL vancomycin], are uncommon, whereas vancomycin-intermediate S. aureus (VISA; MIC of 4-8 µg/mL), are isolated more frequently and develop during long-term and/or repeated use of the antibiotic. VISA can be difficult to eradicate and infections may persist. Our knowledge of mechanisms that underlie the development of VISA is incomplete. We used a genomics approach to investigate the VISA phenotype in three prominent S. aureus lineages. All VISA clinical isolates tested had increased cell wall thickness compared with vancomycin-susceptible S. aureus strains. Growth rates of clonal complex (CC) 5, CC8, and CC45 clinical isolates were reduced in 2 µg/mL vancomycin compared to media alone. Culture in 2 and 4 µg/mL vancomycin sequentially for two weeks reduced susceptibility to daptomycin, televancin, tigecycline, and vancomycin in a majority of CC5, CC8, and CC45 isolates tested. We identified alleles reported previously to contribute to the VISA phenotype, but unexpectedly, these alleles were unique to each CC. A subtherapeutic concentration of vancomycin elicited changes in the VISA transcriptome-common and unique-among the three CCs tested. Multiple genes, including those encoding a glycerate kinase, an M50 family metallopeptidase, and an uncharacterized membrane protein, were upregulated among all three lineages and not reported previously as associated with VISA. Although there are lineage-specific changes in DNA sequence, our findings suggest changes in the VISA transcriptome constitute a general response to stress that confers reduced susceptibility to multiple antibiotics. IMPORTANCE: Our understanding of the mechanisms that underlie the development of vancomycin-intermediate Staphylococcus aureus (VISA) is incomplete. To provide a more comprehensive view of this process, we compared genome sequences of clonal complex (CC) 5, CC8, and CC45 VISA clinical isolates and measured changes in the transcriptomes of these isolates during culture with a subtherapeutic concentration of vancomycin. Notably, we identified differentially expressed genes that were lineage-specific or common to the lineages tested, including genes that have not been previously reported to contribute to a VISA phenotype. Changes in gene expression were accompanied by reduced growth rate, increased cell wall thickness, and reduced susceptibility to daptomycin, televancin, tigecycline, and vancomycin. Our results provide support to the idea that changes in gene expression contribute to the development of VISA among three CCs that are a prominent cause of human infections.

2.
mBio ; 15(6): e0012424, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38722159

RESUMO

Transmission of Yersinia pestis by fleas depends on the formation of condensed bacterial aggregates embedded within a gel-like matrix that localizes to the proventricular valve in the flea foregut and interferes with normal blood feeding. This is essentially a bacterial biofilm phenomenon, which at its end stage requires the production of a Y. pestis exopolysaccharide that bridges the bacteria together in a cohesive, dense biofilm that completely blocks the proventriculus. However, bacterial aggregates are evident within an hour after a flea ingests Y. pestis, and the bacterial exopolysaccharide is not required for this process. In this study, we characterized the biochemical composition of the initial aggregates and demonstrated that the yersinia murine toxin (Ymt), a Y. pestis phospholipase D, greatly enhances rapid aggregation following infected mouse blood meals. The matrix of the bacterial aggregates is complex, containing large amounts of protein and lipid (particularly cholesterol) derived from the flea's blood meal. A similar incidence of proventricular aggregation occurred after fleas ingested whole blood or serum containing Y. pestis, and intact, viable bacteria were not required. The initial aggregation of Y. pestis in the flea gut is likely due to a spontaneous physical process termed depletion aggregation that occurs commonly in environments with high concentrations of polymers or other macromolecules and particles such as bacteria. The initial aggregation sets up subsequent binding aggregation mediated by the bacterially produced exopolysaccharide and mature biofilm that results in proventricular blockage and efficient flea-borne transmission. IMPORTANCE: Yersinia pestis, the bacterial agent of plague, is maintained in nature in mammal-flea-mammal transmission cycles. After a flea feeds on a mammal with septicemic plague, the bacteria rapidly coalesce in the flea's digestive tract to form dense aggregates enveloped in a viscous matrix that often localizes to the foregut. This represents the initial stage of biofilm development that potentiates transmission of Y. pestis when the flea later bites a new host. The rapid aggregation likely occurs via a depletion-aggregation mechanism, a non-canonical first step of bacterial biofilm development. We found that the biofilm matrix is largely composed of host blood proteins and lipids, particularly cholesterol, and that the enzymatic activity of a Y. pestis phospholipase D (Ymt) enhances the initial aggregation. Y. pestis transmitted by flea bite is likely associated with this host-derived matrix, which may initially shield the bacteria from recognition by the host's intradermal innate immune response.


Assuntos
Biofilmes , Fosfolipase D , Sifonápteros , Yersinia pestis , Yersinia pestis/enzimologia , Fosfolipase D/metabolismo , Sifonápteros/microbiologia , Biofilmes/crescimento & desenvolvimento , Peste/microbiologia , Peste/transmissão , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/microbiologia , Matriz Extracelular de Substâncias Poliméricas/ultraestrutura , Polissacarídeos/metabolismo , Microscopia Eletrônica de Transmissão , Proteoma/metabolismo , Animais , Camundongos , Lipídeos/análise
3.
PLoS Pathog ; 19(8): e1011544, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37595007

RESUMO

Astroviruses (AstVs) can cause of severe infection of the central nervous system (CNS) in immunocompromised individuals. Here, we identified a human AstV of the VA1 genotype, HAstV-NIH, as the cause of fatal encephalitis in an immunocompromised adult. We investigated the cells targeted by AstV, neurophysiological changes, and host responses by analyzing gene expression, protein expression, and cellular morphology in brain tissue from three cases of AstV neurologic disease (AstV-ND). We demonstrate that neurons are the principal cells targeted by AstV in the brain and that the cerebellum and brainstem have the highest burden of infection. Detection of VA1 AstV in interconnected brain structures such as thalamus, deep cerebellar nuclei, Purkinje cells, and pontine nuclei indicates that AstV may spread between connected neurons transsynaptically. We found transcriptional dysregulation of neural functions and disruption of both excitatory and inhibitory synaptic innervation of infected neurons. Importantly, transcriptional dysregulation of neural functions occurred in fatal cases, but not in a patient that survived AstV-ND. We show that the innate, but not adaptive immune response was transcriptionally driving host defense in the brain of immunocompromised patients with AstV-ND. Both transcriptome and molecular pathology studies showed that most of the cellular changes were associated with CNS-intrinsic cells involved in phagocytosis and injury repair (microglia, perivascular/parenchymal border macrophages, and astrocytes), but not CNS-extrinsic cells (T and B cells), suggesting an imbalance of innate and adaptive immune responses to AstV infection in the brain as a result of the underlying immunodeficiencies. These results show that VA1 AstV infection of the brain in immunocompromised humans is associated with imbalanced host defense responses, disruption of neuronal somatodendritic compartments and synapses and increased phagocytic cellular activity. Improved understanding of the response to viral infections of the human CNS may provide clues for how to manipulate these processes to improve outcomes.


Assuntos
Infecções por Astroviridae , Encéfalo , Adulto , Humanos , Sistema Nervoso Central , Neurônios , Imunidade
4.
Nat Commun ; 14(1): 4481, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491352

RESUMO

Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2. Infection of CC x K18-hACE2 resulted in a spectrum of survival, viral replication kinetics, and immune profiles. Importantly, in contrast to the K18-hACE2 model, early type I interferon (IFN-I) and regulated proinflammatory responses were required for control of SARS-CoV-2 replication in PWK x K18-hACE2 mice that were highly resistant to disease. Thus, virus dynamics and inflammation observed in COVID-19 can be modeled in diverse mouse strains that provide a genetically tractable platform for understanding anti-coronavirus immunity.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Camundongos , Animais , Citocinas , SARS-CoV-2 , Camundongos Transgênicos , Inflamação/genética , Modelos Animais de Doenças , Pulmão
5.
Nat Microbiol ; 7(1): 62-72, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873293

RESUMO

Swift recruitment of phagocytic leucocytes is critical in preventing infection when bacteria breach through the protective layers of the skin. According to canonical models, this occurs via an indirect process that is initiated by contact of bacteria with resident skin cells and which is independent of the pathogenic potential of the invader. Here we describe a more rapid mechanism of leucocyte recruitment to the site of intrusion of the important skin pathogen Staphylococcus aureus that is based on direct recognition of specific bacterial toxins, the phenol-soluble modulins (PSMs), by circulating leucocytes. We used a combination of intravital imaging, ear infection and skin abscess models, and in vitro gene expression studies to demonstrate that this early recruitment was dependent on the transcription factor EGR1 and contributed to the prevention of infection. Our findings refine the classical notion of the non-specific and resident cell-dependent character of the innate immune response to bacterial infection by demonstrating a pathogen-specific high-alert mechanism involving direct recruitment of immune effector cells by secreted bacterial products.


Assuntos
Toxinas Bacterianas/imunologia , Linfócitos/imunologia , Infiltração de Neutrófilos/imunologia , Pele/imunologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Feminino , Humanos , Microscopia Intravital/métodos , Camundongos Endogâmicos C57BL , Staphylococcus aureus/patogenicidade , Fatores de Virulência
6.
Viruses ; 13(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960775

RESUMO

Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an altered, but not significantly different, systemic IL-10 and IL-6 profile, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, partially recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.


Assuntos
COVID-19 , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Metabolismo dos Lipídeos , Índice de Gravidade de Doença , Animais , COVID-19/patologia , Cricetinae , Citocinas/sangue , Modelos Animais de Doenças , Edema , Fibrina , Hemorragia , Humanos , Interleucina-10 , Interleucina-6 , Lipidômica , Lipídeos/sangue , Fígado/patologia , Pulmão/patologia , Masculino , Mesocricetus , Obesidade , SARS-CoV-2 , Açúcares , Vasculite/patologia , Eliminação de Partículas Virais
7.
bioRxiv ; 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34159329

RESUMO

Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an increased trend of systemic IL-10 and IL-6, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.

8.
Elife ; 102021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33599611

RESUMO

Treatment for many viral infections of the central nervous system (CNS) remains only supportive. Here we address a remaining gap in our knowledge regarding how the CNS and immune systems interact during viral infection. By examining the regulation of the immune and nervous system processes in a nonhuman primate model of West Nile virus neurological disease, we show that virus infection disrupts the homeostasis of the immune-neural-synaptic axis via induction of pleiotropic genes with distinct functions in each component of the axis. This pleiotropic gene regulation suggests an unintended off-target negative impact of virus-induced host immune responses on the neurotransmission, which may be a common feature of various viral infections of the CNS.


Assuntos
Imunidade Adaptativa/genética , Sistema Nervoso Central/imunologia , Pleiotropia Genética/imunologia , Imunidade Inata/genética , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Macaca mulatta , Masculino , Febre do Nilo Ocidental/virologia
9.
mBio ; 10(6)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848292

RESUMO

Klebsiella pneumoniae is a human gut communal organism and notorious opportunistic pathogen. The relative high burden of asymptomatic colonization by K. pneumoniae is often compounded by multidrug resistance-a potential problem for individuals with significant comorbidities or other risk factors for infection. A carbapenem-resistant K. pneumoniae strain classified as multilocus sequence type 258 (ST258) is widespread in the United States and is usually multidrug resistant. Thus, treatment of ST258 infections is often difficult. Inasmuch as new preventive and/or therapeutic measures are needed for treatment of such infections, we developed an ST258 pneumonia model in cynomolgus macaques and tested the ability of an ST258 capsule polysaccharide type 2 (CPS2) vaccine to moderate disease severity. Compared with sham-vaccinated animals, those vaccinated with ST258 CPS2 had significantly less disease as assessed by radiography 24 h after intrabronchial installation of 108 CFU of ST258. All macaques vaccinated with CPS2 ultimately developed ST258-specific antibodies that significantly enhanced serum bactericidal activity and killing of ST258 by macaque neutrophils ex vivo Consistent with a protective immune response to CPS2, transcripts encoding inflammatory mediators were increased in infected lung tissues obtained from CPS-vaccinated animals compared with control, sham-vaccinated macaques. Taken together, our data provide support for the idea that vaccination with ST258 CPS can be used to prevent or moderate infections caused by ST258. As with studies performed decades earlier, we propose that this prime-boost vaccination approach can be extended to include multiple capsule types.IMPORTANCE Multidrug-resistant bacteria continue to be a major problem worldwide, especially among individuals with significant comorbidities and other risk factors for infection. K. pneumoniae is among the leading causes of health care-associated infections, and the organism is often resistant to multiple classes of antibiotics. A carbapenem-resistant K. pneumoniae strain known as multilocus sequence type 258 (ST258) is the predominant carbapenem-resistant Enterobacteriaceae in the health care setting in the United States. Infections caused by ST258 are often difficult to treat and new prophylactic measures and therapeutic approaches are needed. To that end, we developed a lower respiratory tract infection model in cynomolgus macaques in which to test the ability of ST258 CPS to protect against severe ST258 infection.


Assuntos
Vacinas Bacterianas/imunologia , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/imunologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/prevenção & controle , Animais , Biópsia , Imunização , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/prevenção & controle , Primatas , Radiografia , Infecções Respiratórias/diagnóstico , Transcriptoma , Vacinação
10.
J Immunol ; 203(2): 520-531, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31182481

RESUMO

Eosinophilic leukocytes develop in the bone marrow and migrate from peripheral blood to tissues, where they maintain homeostasis and promote dysfunction via release of preformed immunomodulatory mediators. In this study, we explore human eosinophil heterogeneity with a specific focus on naturally occurring variations in cytokine content. We found that human eosinophil-associated cytokines varied on a continuum from minimally (coefficient of variation [CV] ≤ 50%) to moderately variable (50% < CV ≤ 90%). Within the moderately variable group, we detected immunoreactive IL-27 (953 ± 504 pg/mg lysate), a mediator not previously associated with human eosinophils. However, our major finding was the distinct and profound variability of eosinophil-associated IL-16 (CV = 103%). Interestingly, eosinophil IL-16 content correlated directly with body mass index (R 2 = 0.60, ***p < 0.0001) in one donor subset. We found no direct correlation between eosinophil IL-16 content and donor age, sex, total leukocytes, lymphocytes, or eosinophils (cells per microliter), nor was there any relationship between IL-16 content and the characterized -295T/C IL-16 promoter polymorphism. Likewise, although eosinophil IL-1ß, IL-1α, and IL-6 levels correlated with one another, there was no direct association between any of these cytokines and eosinophil IL-16 content. Finally, a moderate increase in total dietary fat resulted in a 2.7-fold reduction in eosinophil IL-16 content among C57BL/6-IL5tg mice. Overall, these results suggest that relationships between energy metabolism, eosinophils, and IL-16 content are not direct or straightforward. Nonetheless, given our current understanding of the connections between asthma and obesity, these findings suggest important eosinophil-focused directions for further exploration.


Assuntos
Citocinas/imunologia , Eosinófilos/imunologia , Interleucina-16/imunologia , Adulto , Idoso , Animais , Asma/imunologia , Medula Óssea/imunologia , Feminino , Humanos , Contagem de Leucócitos/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
11.
mSystems ; 4(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30801031

RESUMO

Yersinia pestis, the etiologic agent of plague, emerged as a fleaborne pathogen only within the last 6,000 years. Just five simple genetic changes in the Yersinia pseudotuberculosis progenitor, which served to eliminate toxicity to fleas and to enhance survival and biofilm formation in the flea digestive tract, were key to the transition to the arthropodborne transmission route. To gain a deeper understanding of the genetic basis for the development of a transmissible biofilm infection in the flea foregut, we evaluated additional gene differences and performed in vivo transcriptional profiling of Y. pestis, a Y. pseudotuberculosis wild-type strain (unable to form biofilm in the flea foregut), and a Y. pseudotuberculosis mutant strain (able to produce foregut-blocking biofilm in fleas) recovered from fleas 1 day and 14 days after an infectious blood meal. Surprisingly, the Y. pseudotuberculosis mutations that increased c-di-GMP levels and enabled biofilm development in the flea did not change the expression levels of the hms genes responsible for the synthesis and export of the extracellular polysaccharide matrix required for mature biofilm formation. The Y. pseudotuberculosis mutant uniquely expressed much higher levels of Yersinia type VI secretion system 4 (T6SS-4) in the flea, and this locus was required for flea blockage by Y. pseudotuberculosis but not for blockage by Y. pestis. Significant differences between the two species in expression of several metabolism genes, the Psa fimbrial genes, quorum sensing-related genes, transcription regulation genes, and stress response genes were evident during flea infection. IMPORTANCE Y. pestis emerged as a highly virulent, arthropod-transmitted pathogen on the basis of relatively few and discrete genetic changes from Y. pseudotuberculosis. Parallel comparisons of the in vitro and in vivo transcriptomes of Y. pestis and two Y. pseudotuberculosis variants that produce a nontransmissible infection and a transmissible infection of the flea vector, respectively, provided insights into how Y. pestis has adapted to life in its flea vector and point to evolutionary changes in the regulation of metabolic and biofilm development pathways in these two closely related species.

12.
J Bacteriol ; 201(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30745369

RESUMO

Coxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, including Legionella pneumophila, which has a developmental cycle superficially similar to that of C. burnetii Here, we used a C. burnetii ΔrpoS mutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with the rpoS mutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria. RNA sequencing and whole-cell mass spectrometry of the C. burnetii ΔrpoS mutant revealed that a substantial portion of the C. burnetii genome is regulated by RpoS during SCV development. Regulated genes include those involved in stress responses, arginine transport, peptidoglycan remodeling, and synthesis of the SCV-specific protein ScvA. Genes comprising the dot/icm locus, responsible for production of the Dot/Icm type 4B secretion system, were also dysregulated in the rpoS mutant. These data were corroborated with independent assays demonstrating that the C. burnetii ΔrpoS strain has increased sensitivity to hydrogen peroxide and carbenicillin and a thinner cell wall/outer membrane complex. Collectively, these results demonstrate that RpoS is an important regulator of genes involved in C. burnetii SCV development and intracellular growth.IMPORTANCE The Q fever bacterium Coxiella burnetii has spore-like environmental stability, a characteristic that contributes to its designation as a potential bioweapon. Stability is likely conferred by a highly resistant, small cell variant (SCV) stationary-phase form that arises during a biphasic developmental cycle. Here, we define the role of the alternative sigma factor RpoS in regulating genes associated with SCV development. Genes involved in stress responses, amino acid transport, cell wall remodeling, and type 4B effector secretion were dysregulated in the rpoS mutant. Cellular impairments included defects in intracellular growth, cell wall structure, and resistance to oxidants. These results support RpoS as a central regulator of the Coxiella developmental cycle and identify developmentally regulated genes involved in morphological differentiation.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/citologia , Coxiella burnetii/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Animais , Chlorocebus aethiops , Coxiella burnetii/genética , Citoplasma/microbiologia , Células Epiteliais/microbiologia , Deleção de Genes , Perfilação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Proteômica , Fator sigma/deficiência , Células THP-1 , Células Vero
13.
Proc Natl Acad Sci U S A ; 115(49): 12513-12518, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455312

RESUMO

Concerns about malaria parasite resistance to treatment with artemisinin drugs (ARTs) have grown with findings of prolonged parasite clearance t1/2s (>5 h) and their association with mutations in Plasmodium falciparum Kelch-propeller protein K13. Here, we describe a P. falciparum laboratory cross of K13 C580Y mutant with C580 wild-type parasites to investigate ART response phenotypes in vitro and in vivo. After genotyping >400 isolated progeny, we evaluated 20 recombinants in vitro: IC50 measurements of dihydroartemisinin were at similar low nanomolar levels for C580Y- and C580-type progeny (mean ratio, 1.00; 95% CI, 0.62-1.61), whereas, in a ring-stage survival assay, the C580Y-type progeny had 19.6-fold (95% CI, 9.76-39.2) higher average counts. In splenectomized Aotus monkeys treated with three daily doses of i.v. artesunate, t1/2 calculations by three different methods yielded mean differences of 0.01 h (95% CI, -3.66 to 3.67), 0.80 h (95% CI, -0.92 to 2.53), and 2.07 h (95% CI, 0.77-3.36) between C580Y and C580 infections. Incidences of recrudescence were 57% in C580Y (4 of 7) versus 70% in C580 (7 of 10) infections (-13% difference; 95% CI, -58% to 35%). Allelic substitution of C580 in a C580Y-containing progeny clone (76H10) yielded a transformant (76H10C580Rev) that, in an infected monkey, recrudesced regularly 13 times over 500 d. Frequent recrudescences of ART-treated P. falciparum infections occur with or without K13 mutations and emphasize the need for improved partner drugs to effectively eliminate the parasites that persist through the ART component of combination therapy.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Aotidae , Cruzamentos Genéticos , Resistência a Medicamentos , Regulação da Expressão Gênica , Mutação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
14.
mSphere ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29299535

RESUMO

Neutrophils are essential cells of host innate immunity. Although the role of neutrophils in defense against bacterial and fungal infections is well characterized, there is a relative paucity of information about their role against viral infections. Influenza A virus (IAV) infection can be associated with secondary bacterial coinfection, and it has long been posited that the ability of IAV to alter normal neutrophil function predisposes individuals to secondary bacterial infections. To better understand this phenomenon, we evaluated the interaction of pandemic or seasonal H1N1 IAV with human neutrophils isolated from healthy persons. These viruses were ingested by human neutrophils and elicited changes in neutrophil gene expression that are consistent with an interferon-mediated immune response. The viability of neutrophils following coculture with either pandemic or seasonal H1N1 IAV was similar for up to 18 h of culture. Notably, neutrophil exposure to seasonal (but not pandemic) IAV primed these leukocytes for enhanced functions, including production of reactive oxygen species and bactericidal activity. Taken together, our results are at variance with the universal idea that IAV impairs neutrophil function directly to predispose individuals to secondary bacterial infections. Rather, we suggest that some strains of IAV prime neutrophils for enhanced bacterial clearance. IMPORTANCE A long-standing notion is that IAV inhibits normal neutrophil function and thereby predisposes individuals to secondary bacterial infections. Here we report that seasonal H1N1 IAV primes human neutrophils for enhanced killing of Staphylococcus aureus. Moreover, we provide a comprehensive view of the changes in neutrophil gene expression during interaction with seasonal or pandemic IAV and report how these changes relate to functions such as bactericidal activity. This study expands our knowledge of IAV interactions with human neutrophils.

15.
PLoS Pathog ; 13(2): e1006153, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28151994

RESUMO

Bacterial sepsis is a major killer in hospitalized patients. Coagulase-negative staphylococci (CNS) with the leading species Staphylococcus epidermidis are the most frequent causes of nosocomial sepsis, with most infectious isolates being methicillin-resistant. However, which bacterial factors underlie the pathogenesis of CNS sepsis is unknown. While it has been commonly believed that invariant structures on the surface of CNS trigger sepsis by causing an over-reaction of the immune system, we show here that sepsis caused by methicillin-resistant S. epidermidis is to a large extent mediated by the methicillin resistance island-encoded peptide toxin, PSM-mec. PSM-mec contributed to bacterial survival in whole human blood and resistance to neutrophil-mediated killing, and caused significantly increased mortality and cytokine expression in a mouse sepsis model. Furthermore, we show that the PSM-mec peptide itself, rather than the regulatory RNA in which its gene is embedded, is responsible for the observed virulence phenotype. This finding is of particular importance given the contrasting roles of the psm-mec locus that have been reported in S. aureus strains, inasmuch as our findings suggest that the psm-mec locus may exert effects in the background of S. aureus strains that differ from its original role in the CNS environment due to originally "unintended" interferences. Notably, while toxins have never been clearly implied in CNS infections, our tissue culture and mouse infection model data indicate that an important type of infection caused by the predominant CNS species is mediated to a large extent by a toxin. These findings suggest that CNS infections may be amenable to virulence-targeted drug development approaches.


Assuntos
Toxinas Bacterianas/toxicidade , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/patogenicidade , Animais , Modelos Animais de Doenças , Feminino , Humanos , Resistência a Meticilina , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Virulência/fisiologia
16.
mBio ; 7(5)2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27795396

RESUMO

The virulence of many bacterial pathogens, including the important human pathogen Staphylococcus aureus, depends on the secretion of frequently large amounts of toxins. Toxin production involves the need for the bacteria to make physiological adjustments for energy conservation. While toxins are primarily targets of gene regulation, such changes may be accomplished by regulatory functions of the toxins themselves. However, mechanisms by which toxins regulate gene expression have remained poorly understood. We show here that the staphylococcal phenol-soluble modulin (PSM) toxins have gene regulatory functions that, in particular, include inducing expression of their own transport system by direct interference with a GntR-type repressor protein. This capacity was most pronounced in PSMs with low cytolytic capacity, demonstrating functional specification among closely related members of that toxin family during evolution. Our study presents a molecular mechanism of gene regulation by a bacterial toxin that adapts bacterial physiology to enhanced toxin production. IMPORTANCE: Toxins play a major role in many bacterial diseases. When toxins are produced during infection, the bacteria need to balance this energy-consuming task with other physiological processes. However, it has remained poorly understood how toxins can impact gene expression to trigger such adaptations. We found that specific members of a toxin family in the major human pathogen Staphylococcus aureus have evolved for gene regulatory purposes. These specific toxins interact with a DNA-binding regulator protein to enable production of the toxin export machinery and ascertain that the machinery is not expressed when toxins are not made and it is not needed. Our study gives mechanistic insight into how toxins may directly adjust bacterial physiology to times of toxin production during infection.


Assuntos
Toxinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Mapeamento de Interação de Proteínas , Transporte Proteico
17.
PLoS One ; 11(2): e0147707, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26845332

RESUMO

Adaptation is key for survival as vector-borne pathogens transmit between the arthropod and vertebrate, and temperature change is an environmental signal inducing alterations in gene expression of tick-borne spirochetes. While plasmids are often associated with adaptation, complex genomes of relapsing fever spirochetes have hindered progress in understanding the mechanisms of vector colonization and transmission. We utilized recent advances in genome sequencing to generate the most complete version of the Borrelia turicatae 150 kb linear megaplasmid (lp150). Additionally, a transcriptional analysis of open reading frames (ORFs) in lp150 was conducted and identified regions that were up-regulated during in vitro cultivation at tick-like growth temperatures (22°C), relative to bacteria grown at 35°C and infected murine blood. Evaluation of the 3' end of lp150 identified a cluster of ORFs that code for putative surface lipoproteins. With a microbe's surface proteome serving important roles in pathogenesis, we confirmed the ORFs expression in vitro and in the tick compared to spirochetes infecting murine blood. Transcriptional evaluation of lp150 indicates the plasmid likely has essential roles in vector colonization and/or initiating mammalian infection. These results also provide a much needed transcriptional framework to delineate the molecular mechanisms utilized by relapsing fever spirochetes during their enzootic cycle.


Assuntos
Borrelia/genética , Vetores de Doenças , Plasmídeos/genética , Transcriptoma , Animais , Biologia Computacional/métodos , Mapeamento de Sequências Contíguas , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Ordem dos Genes , Doença de Lyme/microbiologia , Camundongos , Anotação de Sequência Molecular , Fases de Leitura Aberta , Carrapatos/microbiologia
18.
PLoS One ; 11(2): e0149957, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26909555

RESUMO

A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance.


Assuntos
Parede Celular/metabolismo , Coxiella burnetii/metabolismo , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Febre Q/metabolismo , Transcriptoma , Animais , Parede Celular/genética , Chlorocebus aethiops , Coxiella burnetii/genética , Coxiella burnetii/patogenicidade , Perfilação da Expressão Gênica , Humanos , Febre Q/genética , Células Vero
19.
Appl Environ Microbiol ; 82(4): 1183-1195, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655756

RESUMO

The saprophyte Leptospira biflexa is an excellent model for studying the physiology of the medically important Leptospira genus, the pathogenic members of which are more recalcitrant to genetic manipulation and have significantly slower in vitro growth. However, relatively little is known regarding the proteome of L. biflexa, limiting its utility as a model for some studies. Therefore, we have generated a proteomic map of both soluble and membrane-associated proteins of L. biflexa during exponential growth and in stationary phase. Using these data, we identified abundantly produced proteins in each cellular fraction and quantified the transcript levels from a subset of these genes using quantitative reverse transcription-PCR (RT-PCR). These proteins should prove useful as cellular markers and as controls for gene expression studies. We also observed a significant number of L. biflexa membrane-associated proteins with multiple isoforms, each having unique isoelectric focusing points. L. biflexa cell lysates were examined for several posttranslational modifications suggested by the protein patterns. Methylation and acetylation of lysine residues were predominately observed in the proteins of the membrane-associated fraction, while phosphorylation was detected mainly among soluble proteins. These three posttranslational modification systems appear to be conserved between the free-living species L. biflexa and the pathogenic species Leptospira interrogans, suggesting an important physiological advantage despite the varied life cycles of the different species.


Assuntos
Proteínas de Bactérias/metabolismo , Leptospira/fisiologia , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteômica , Perfilação da Expressão Gênica , Leptospira/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Infect Immun ; 83(11): 4277-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283340

RESUMO

Polymorphonuclear leukocytes (PMN) from patients with chronic granulomatous disease (CGD) fail to produce microbicidal concentrations of reactive oxygen species (ROS) due to mutations in NOX2. Patients with CGD suffer from severe, life-threatening infections and inflammatory complications. Granulibacter bethesdensis is an emerging Gram-negative pathogen in CGD that resists killing by PMN of CGD patients (CGD PMN) and inhibits PMN apoptosis through unknown mechanisms. Microarray analysis was used to study mRNA expression in PMN from healthy subjects (normal PMN) and CGD PMN during incubation with G. bethesdensis and, simultaneously, in G. bethesdensis with normal and CGD PMN. We detected upregulation of antiapoptotic genes (e.g., XIAP and GADD45B) and downregulation of proapoptotic genes (e.g., CASP8 and APAF1) in infected PMN. Transcript and protein levels of inflammation- and immunity-related genes were also altered. Upon interaction with PMN, G. bethesdensis altered the expression of ROS resistance genes in the presence of normal but not CGD PMN. Levels of bacterial stress response genes, including the ClpB gene, increased during phagocytosis by both normal and CGD PMN demonstrating responses to oxygen-independent PMN antimicrobial systems. Antisense knockdown demonstrated that ClpB is dispensable for extracellular growth but is essential for bacterial resistance to both normal and CGD PMN. Metabolic adaptation of Granulibacter growth in PMN included the upregulation of pyruvate dehydrogenase. Pharmacological inhibition of pyruvate dehydrogenase by triphenylbismuthdichloride was lethal to Granulibacter. This study expands knowledge of microbial pathogenesis of Granulibacter in cells from permissive (CGD) and nonpermissive (normal) hosts and identifies potentially druggable microbial factors, such as pyruvate dehydrogenase and ClpB, to help combat this antibiotic-resistant pathogen.


Assuntos
Acetobacteraceae/genética , Proteínas de Bactérias/genética , Doença Granulomatosa Crônica/genética , Neutrófilos/metabolismo , Acetobacteraceae/metabolismo , Adulto , Idoso , Proteínas de Bactérias/metabolismo , Feminino , Perfilação da Expressão Gênica , Doença Granulomatosa Crônica/imunologia , Doença Granulomatosa Crônica/microbiologia , Voluntários Saudáveis , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/microbiologia , Fagocitose , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA