Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Allergy ; 77(3): 870-882, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34309864

RESUMO

BACKGROUND: High-altitude therapy has been used as add-on treatment for allergic asthma with considerable success. However, the underlying mechanisms remain unclear. In order to investigate the possible therapeutic effects of high-altitude therapy on allergic asthma, we utilized a new in vivo mouse model. METHODS: Mice were treated with house dust mite (HDM) extract over 4 weeks and co-exposed to 10% oxygen (Hyp) or room air for the final 2 weeks. Experimental asthma was assessed by airway hyper-responsiveness, mucus hypersecretion and inflammatory cell recruitment. Isolated immune cells from mouse and allergic patients were stimulated in vitro with HDM under Hyp and normoxia in different co-culture systems to analyse the adaptive immune response. RESULTS: Compared to HDM-treated mice in room air, HDM-treated Hyp-mice displayed ameliorated mucosal hypersecretion and airway hyper-responsiveness. The attenuated asthma phenotype was associated with strongly reduced activation of antigen-presenting cells (APCs), effector cell infiltration and cytokine secretion. In vitro, hypoxia almost completely suppressed the HDM-induced adaptive immune response in both mouse and human immune cells. While hypoxia did not affect effector T-cell responses per-se, it interfered with antigen-presenting cell (APC) differentiation and APC/effector cell crosstalk. CONCLUSIONS: Hypoxia-induced reduction in the Th2-response to HDM ameliorates allergic asthma in vivo. Hypoxia interferes with APC/T-cell crosstalk and confers an unresponsive phenotype to APCs.


Assuntos
Asma , Oxigênio , Alérgenos , Animais , Modelos Animais de Doenças , Humanos , Hipóxia , Imunidade Humoral , Camundongos , Oxigênio/farmacologia , Pyroglyphidae , Células Th2
2.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769126

RESUMO

Acute respiratory inflammation, most commonly resulting from bacterial or viral infection, is one of the leading causes of death and disability worldwide. The inflammatory lipid mediator prostaglandin D2 (PGD2) and its rate-limiting enzyme, hematopoietic PGD synthase (hPGDS), are well-known drivers of allergic pulmonary inflammation. Here, we sought to investigate the source and role of hPGDS-derived PGD2 in acute pulmonary inflammation. Murine bronchoalveolar monocytes/macrophages from LPS- but not OVA-induced lung inflammation released significant amounts of PGD2. Accordingly, human monocyte-derived macrophages expressed high basal levels of hPGDS and released significant levels of PGD2 after LPS/IFN-γ, but not IL-4 stimulation. Human peripheral blood monocytes secreted significantly more PGD2 than monocyte-derived macrophages. Using human precision-cut lung slices (PCLS), we observed that LPS/IFN-γ but not IL-4/IL-13 drive PGD2 production in the lung. HPGDS inhibition prevented LPS-induced PGD2 release by human monocyte-derived macrophages and PCLS. As a result of hPGDS inhibition, less TNF-α, IL-6 and IL-10 could be determined in PCLS-conditioned medium. Collectively, this dataset reflects the time-dependent release of PGD2 by human phagocytes, highlights the importance of monocytes and macrophages as PGD2 sources and suggests that hPGDS inhibition might be a potential therapeutic option for acute, non-allergic lung inflammation.


Assuntos
Lesão Pulmonar Aguda/imunologia , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Macrófagos Alveolares/metabolismo , Monócitos/metabolismo , Prostaglandina D2/metabolismo , Animais , Humanos , Camundongos
3.
Biochem Pharmacol ; 192: 114690, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274356

RESUMO

BACKGROUND: Eosinophilic asthma is increasingly recognized as one of the most severe and difficult-to-treat asthma subtypes. The JAK/STAT pathway is the principal signaling mechanism for a variety of cytokines and growth factors involved in asthma. However, the direct effect of JAK inhibitors on eosinophil effector function has not been addressed thus far. OBJECTIVE: Here we compared the effects of the JAK1/2 inhibitor baricitinib and the JAK3 inhibitor tofacitinib on eosinophil effector function in vitro and in vivo. METHODS: Differentiation of murine bone marrow-derived eosinophils. Migratory responsiveness, respiratory burst, phagocytosis and apoptosis of human peripheral blood eosinophils were assessed in vitro. In vivo effects were investigated in a mouse model of acute house dust mite-induced airway inflammation in BALB/c mice. RESULTS: Baricitinib more potently induced apoptosis and inhibited eosinophil chemotaxis and respiratory burst, while baricitinib and tofacitinib similarly affected eosinophil differentiation and phagocytosis. Of the JAK inhibitors, oral application of baricitinib more potently prevented lung eosinophilia in mice following allergen challenge. However, both JAK inhibitors neither affected airway resistance nor compliance. CONCLUSION: Our data suggest that the JAK1/2 inhibitor baricitinib is even more potent than the JAK3 inhibitor tofacitinib in suppressing eosinophil effector function. Thus, targeting the JAK1/2 pathway represents a promising therapeutic strategy for eosinophilic inflammation as observed in severe eosinophilic asthma.


Assuntos
Azetidinas/uso terapêutico , Eosinofilia/tratamento farmacológico , Eosinófilos/efeitos dos fármacos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/uso terapêutico , Purinas/uso terapêutico , Pirazóis/uso terapêutico , Sulfonamidas/uso terapêutico , Adulto , Animais , Azetidinas/farmacologia , Células Cultivadas , Eosinofilia/induzido quimicamente , Eosinofilia/imunologia , Eosinófilos/fisiologia , Feminino , Humanos , Janus Quinase 1/imunologia , Janus Quinase 2/imunologia , Inibidores de Janus Quinases/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Purinas/farmacologia , Pirazóis/farmacologia , Pyroglyphidae/imunologia , Sulfonamidas/farmacologia , Adulto Jovem
4.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063947

RESUMO

Endocannabinoids (eCBs) are lipid-based retrograde messengers with a relatively short half-life that are produced endogenously and, upon binding to the primary cannabinoid receptors CB1/2, mediate multiple mechanisms of intercellular communication within the body. Endocannabinoid signaling is implicated in brain development, memory formation, learning, mood, anxiety, depression, feeding behavior, analgesia, and drug addiction. It is now recognized that the endocannabinoid system mediates not only neuronal communications but also governs the crosstalk between neurons, glia, and immune cells, and thus represents an important player within the neuroimmune interface. Generation of primary endocannabinoids is accompanied by the production of their congeners, the N-acylethanolamines (NAEs), which together with N-acylneurotransmitters, lipoamino acids and primary fatty acid amides comprise expanded endocannabinoid/endovanilloid signaling systems. Most of these compounds do not bind CB1/2, but signal via several other pathways involving the transient receptor potential cation channel subfamily V member 1 (TRPV1), peroxisome proliferator-activated receptor (PPAR)-α and non-cannabinoid G-protein coupled receptors (GPRs) to mediate anti-inflammatory, immunomodulatory and neuroprotective activities. In vivo generation of the cannabinoid compounds is triggered by physiological and pathological stimuli and, specifically in the brain, mediates fine regulation of synaptic strength, neuroprotection, and resolution of neuroinflammation. Here, we review the role of the endocannabinoid system in intrinsic neuroprotective mechanisms and its therapeutic potential for the treatment of neuroinflammation and associated synaptopathy.


Assuntos
Endocanabinoides/metabolismo , Fatores Imunológicos/metabolismo , Inflamação/metabolismo , Neuroproteção/fisiologia , Animais , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais
5.
Br J Pharmacol ; 178(5): 1234-1248, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450054

RESUMO

BACKGROUND AND PURPOSE: Miltefosine is an alkylphosphocholine drug with proven effectiveness against various types of parasites and cancer cells. Miltefosine is not only able to induce direct parasite killing but also modulates host immunity, for example by reducing the severity of allergies in patients. To date, there are no reports on the effect of miltefosine on eosinophils, central effector cells involved in allergic inflammation. EXPERIMENTAL APPROACH: We tested the effect of miltefosine on the activation of human eosinophils and their effector responses in vitro and in mouse models of eosinophilic migration and ovalbumin-induced allergic lung inflammation. KEY RESULTS: The addition of miltefosine suppressed several eosinophilic effector reactions such as CD11b up-regulation, degranulation, chemotaxis and downstream signalling. Miltefosine significantly reduced the infiltration of immune cells into the respiratory tract of mice in an allergic cell recruitment model. Finally, in a model of allergic inflammation, treatment with miltefosine resulted in an improvement of lung function parameters. CONCLUSION AND IMPLICATIONS: Our observations suggest a strong modulatory activity of miltefosine in the regulation of eosinophilic inflammation in vitro and in vivo. Our data underline the potential efficacy of miltefosine in the treatment of allergic diseases and other eosinophil-associated disorders and may raise important questions regarding the immunomodulatory effect of miltefosine in patients treated for leishmania infections.


Assuntos
Parasitos , Preparações Farmacêuticas , Animais , Eosinófilos , Humanos , Inflamação , Camundongos , Ovalbumina , Fosforilcolina/análogos & derivados
6.
Artigo em Inglês | MEDLINE | ID: mdl-32171907

RESUMO

Eosinophils are important multifaceted effector cells involved in allergic inflammation. Following allergen challenge, eosinophils and other immune cells release secreted phospholipases, generating lysophosphatidylcholines (LPCs). LPCs are potent lipid mediators, and serum levels of LPCs associate with asthma severity, suggesting a regulatory activity of LPCs in asthma development. As of yet, the direct effects of LPCs on eosinophils remain unclear. In the present study, we tested the effects of the major LPC species (16:0, 18:0 and 18:1) on eosinophils isolated from healthy human donors. Addition of saturated LPCs in the presence of albumin rapidly disrupted cholesterol-rich nanodomains on eosinophil cell membranes and suppressed multiple eosinophil effector responses, such as CD11b upregulation, degranulation, chemotaxis, and downstream signaling. Furthermore, we demonstrate in a mouse model of allergic cell recruitment, that LPC treatment markedly reduces immune cell infiltration into the lungs. Our observations suggest a strong modulatory activity of LPCs in the regulation of eosinophilic inflammation in vitro and in vivo.


Assuntos
Quimiotaxia , Eosinófilos/efeitos dos fármacos , Hipersensibilidade/metabolismo , Lisofosfatidilcolinas/farmacologia , Animais , Antígeno CD11b/metabolismo , Células Cultivadas , Eosinófilos/metabolismo , Eosinófilos/fisiologia , Humanos , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
7.
Biochem Pharmacol ; 174: 113783, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31881191

RESUMO

Neuroinflammation plays a prominent role in the onset of demyelinating diseases, major depressive disorder and delayed neurodegeneration. An open question remains whether pharmacological suppression of inflammation can effectively reduce the progression of these states. Bioactive lipid mediators such as N-acylethanolamines (NAEs) have an anti-inflammatory activity and are of pharmacological interest due to their endogenous on-demand production and the existence of distinct biological targets in humans and animals. Here we demonstrate for the first time, that treatment with stearoylethanolamide (SEA), a prevailing endogenously formed NAE, is neuroprotective against LPS-induced neuroinflammation in C57BL/6 male mice. SEA restricted the spreading of peripheral inflammation to the brain, and averted the activation of resident microglia and leukocyte trafficking to the brain parenchyma. Treatment with SEA per se increased the neuronal expression of cannabinoid receptors CB1/2 and brain levels of the most potent endogenous CB1/2 agonist 2-arachidonoylglycerol in vivo. SEA enhanced the amplitude of synaptic vesicle release, supported the balanced signal-to-noise ratio in glutamate- and GABAergic neurotransmission and decreased the excitotoxic risk associated with higher extracellular glutamate levels under neuroinflammation. The interference of SEA with the endocannabinoid system and presynaptic neurotransmitter release may represent an intrinsic neuroprotective mechanism that is triggered by inflammation and glutamate excitotoxicity. Thus, our data allows to consider SEA for the preventive therapy of acute and late-onset neuroinflammation-associated synaptic dysfunction and neurodegeneration.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encefalite/prevenção & controle , Endocanabinoides/metabolismo , Fármacos Neuroprotetores/farmacologia , Ácidos Esteáricos/farmacologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Encefalite/imunologia , Encefalite/metabolismo , Inflamação , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Transdução de Sinais
8.
Allergy ; 75(2): 392-402, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31408538

RESUMO

BACKGROUND: Recent studies pointed to a crucial role for apolipoproteins in the pathogenesis of inflammatory diseases. However, the role of apolipoprotein-IV (ApoA-IV) in allergic inflammation has not been addressed thoroughly thus far. OBJECTIVE: Here, we explored the anti-inflammatory effects and underlying signaling pathways of ApoA-IV on eosinophil effector function in vitro and in vivo. METHODS: Migratory responsiveness, Ca2+ -flux and apoptosis of human peripheral blood eosinophils were assessed in vitro. Allergen-driven airway inflammation was assessed in a mouse model of acute house dust mite-induced asthma. ApoA-IV serum levels were determined by ELISA. RESULTS: Recombinant ApoA-IV potently inhibited eosinophil responsiveness in vitro as measured by Ca2+ -flux, shape change, integrin (CD11b) expression, and chemotaxis. The underlying molecular mechanism involved the activation of Rev-ErbA-α and induced a PI3K/PDK1/PKA-dependent signaling cascade. Systemic application of ApoA-IV prevented airway hyperresponsiveness (AHR) and airway eosinophilia in mice following allergen challenge. ApoA-IV levels were decreased in serum from allergic patients compared to healthy controls. CONCLUSION: Our data suggest that ApoA-IV is an endogenous anti-inflammatory protein that potently suppresses effector cell functions in eosinophils. Thus, exogenously applied ApoA-IV may represent a novel pharmacological approach for the treatment of allergic inflammation and other eosinophil-driven disorders.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/sangue , Apolipoproteínas A/administração & dosagem , Apolipoproteínas A/sangue , Asma/sangue , Asma/tratamento farmacológico , Rinite/sangue , Sinusite/sangue , Adolescente , Adulto , Alérgenos/efeitos adversos , Animais , Anti-Inflamatórios/farmacologia , Apolipoproteínas A/farmacologia , Apoptose/efeitos dos fármacos , Asma/etiologia , Cálcio/metabolismo , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Pyroglyphidae/imunologia , Adulto Jovem
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1280-1292, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185305

RESUMO

Despite strong evidence that high-density lipoproteins (HDLs) modulate the immune response, the role of HDL in allergies is still poorly understood. Many patients with allergic rhinitis (AR) develop a late-phase response, characterized by infiltration of monocytes and eosinophils into the nasal submucosa. Functional impairment of HDL in AR-patients may insufficiently suppress inflammation and cell infiltration, but the effect of AR on the composition and function of HDL is not understood. We used apolipoprotein (apo) B-depleted serum as well as isolated HDL from AR-patients (n = 43) and non-allergic healthy controls (n = 20) for detailed compositional and functional characterization of HDL. Both AR-HDL and apoB-depleted serum of AR-patients showed decreased anti-oxidative capacity and impaired ability to suppress monocyte nuclear factor-κB expression and pro-inflammatory cytokine secretion, such as interleukin (IL)-4, IL-6, IL-8, tumor necrosis factor alpha and IL-1 beta. Sera of AR-patients showed decreased paraoxonase and cholesteryl-ester transfer protein activities, increased lipoprotein-associated phospholipase A2 activity, while lecithin-cholesterol acyltransferase activity and cholesterol efflux capacity were not altered. Surprisingly, apoB-depleted serum and HDL from AR-patients showed an increased ability to suppress eosinophil effector responses upon eotaxin-2/CCL24 stimulation. Mass spectrometry and biochemical analyses showed reduced levels of apoA-I and phosphatidylcholine, but increased levels of apoA-II, triglycerides and lyso-phosphatidylcholine in AR-HDL. The changes in AR-HDL composition were associated with altered functional properties. In conclusion, AR alters HDL composition linked to decreased anti-oxidative and anti-inflammatory properties but improves the ability of HDL to suppress eosinophil effector responses.


Assuntos
Lipoproteínas HDL/imunologia , Rinite Alérgica/imunologia , Adolescente , Adulto , Criança , Citocinas/análise , Citocinas/imunologia , Feminino , Humanos , Imunoglobulina E/imunologia , Lipoproteínas HDL/análise , Masculino , Monócitos/imunologia , Adulto Jovem
10.
J Allergy Clin Immunol ; 144(3): 764-776, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31082458

RESUMO

BACKGROUND: Lung eosinophilia is a hallmark of asthma, and eosinophils are believed to play a crucial role in the pathogenesis of allergic inflammatory diseases. Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are produced in high amounts in the gastrointestinal tract by commensal bacteria and can be absorbed into the bloodstream. Although there is recent evidence that SCFAs are beneficial in allergic asthma models, the effect on eosinophils has remained elusive. OBJECTIVE: The role of SCFAs was investigated in human eosinophil function and a mouse model of allergic asthma. METHODS: Eosinophils were purified from self-reported allergic or healthy donors. Migration, adhesion to the endothelium, and eosinophil survival were studied in vitro. Ca2+ flux, apoptosis, mitochondrial membrane potential, and expression of surface markers were determined by using flow cytometry and in part by using real-time PCR. Allergic airway inflammation was assessed in vivo in an ovalbumin-induced asthma model by using invasive spirometry. RESULTS: For the first time, we observed that SCFAs were able to attenuate human eosinophils at several functional levels, including (1) adhesion to the endothelium, (2) migration, and (3) survival. These effects were independent from GPR41 and GPR43 but were accompanied by histone acetylation and mimicked by trichostatin A, a pan-histone deacetylase inhibitor. In vivo butyrate ameliorated allergen-induced airway and lung eosinophilia, reduced type 2 cytokine levels in bronchial fluid, and improved airway hyperresponsiveness in mice. CONCLUSION: These in vitro and in vivo findings highlight the importance of SCFAs, especially butyrate as a promising therapeutic agent in allergic inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Butiratos/farmacologia , Butiratos/uso terapêutico , Eosinófilos/efeitos dos fármacos , Eosinofilia Pulmonar/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Asma/genética , Asma/imunologia , Movimento Celular/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Eosinofilia Pulmonar/genética , Eosinofilia Pulmonar/imunologia
11.
Dig Dis Sci ; 64(10): 2806-2814, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30989466

RESUMO

BACKGROUND: The prostaglandin D2 receptor DP2 has been implicated in eosinophil infiltration and the development of eosinophilic esophagitis (EoE). AIMS AND METHODS: In this study, we investigated an involvement of PGE2 (EP1-EP4) and PGD2 (DP1) receptors in EoE by measuring their expression in peripheral blood eosinophils and esophageal mucosal biopsies of EoE patients and by performing migration and adhesion assays with eosinophils from healthy donors. RESULTS: Expression of EP2 and EP4, but not EP1 and EP3, was decreased in blood eosinophils of patients with EoE vs. control subjects. Adhesion of eosinophils to esophageal epithelial cells was decreased by EP2 receptor agonist butaprost and EP4 agonist ONO-AE1-329, whereas DP1 agonist BW245C increased adhesion. In chemotaxis assays with supernatant from human esophageal epithelial cells, only ONO-AE1-329 but not butaprost or BW245C inhibited the migration of eosinophils. Expression of EP and DP receptors in epithelial cells and eosinophils was detected in sections of esophageal biopsies from EoE patients by immunohistochemistry. qPCR of biopsies from EoE patients revealed that gene expression of EP4 and DP1 was the highest among PGE2 and PGD2 receptors. Esophageal epithelial cells in culture showed high gene expression for EP2 and EP4. Activation of EP2 and EP4 receptors decreased barrier integrity of esophageal epithelial cells in impedance assays. CONCLUSIONS: Activation of EP2 and EP4 receptors may inhibit eosinophil recruitment to the esophageal mucosa. However, their activation could negatively affect esophageal barrier integrity suggesting that eosinophilic rather than epithelial EP2 and EP4 have a protective role in EoE.


Assuntos
Esofagite Eosinofílica , Eosinófilos , Mucosa Esofágica , Receptores de Prostaglandina E Subtipo EP2 , Receptores de Prostaglandina E Subtipo EP4 , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Adesão Celular , Ensaios de Migração Celular/métodos , Células Cultivadas , Esofagite Eosinofílica/sangue , Esofagite Eosinofílica/metabolismo , Esofagite Eosinofílica/patologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Mucosa Esofágica/efeitos dos fármacos , Mucosa Esofágica/metabolismo , Mucosa Esofágica/patologia , Humanos , Imuno-Histoquímica , Éteres Metílicos/farmacologia , Projetos Piloto , Prostaglandinas E Sintéticas/farmacologia , Receptores de Prostaglandina E Subtipo EP2/agonistas , Receptores de Prostaglandina E Subtipo EP2/análise , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/análise
12.
Biochim Biophys Acta Gen Subj ; 1862(12): 2701-2713, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251660

RESUMO

BACKGROUND: Neurosecretion is the multistep process occurring in separate spatial and temporal cellular boundaries which complicates its comprehensive analysis. Most of the research are focused on one distinct stage of synaptic vesicle recycling. Here, we describe approaches for complex analysis of synaptic vesicle (SV) endocytosis and separate steps of exocytosis at the level of presynaptic bouton and highly purified SVs. METHODS: Proposed fluorescence-based strategies and analysis of neurotransmitter transport provided the advantages in studies of exocytosis steps. We evaluated SV docking/tethering, their Ca2+-dependent fusion and release of neurotransmitters gamma-aminobutyric acid (GABA) and glutamate in two animal models. RESULTS: Approaches enabled us to study: 1) endocytosis/Ca2+-dependent release of fluorescent carbon nanodots (CNDs) during stimulation of nerve terminals; 2) the action of levetiracetam, modulator of SV glycoprotein SV2, on fusion competence of SVs and stimulated release of GABA and glutamate; 3) impairments of several steps of neurosecretion under vitamin D3 deficiency. CONCLUSIONS: Our algorithm enabled us to verify the method validity for multidimensional analysis of SV turnover. By increasing SV docking and the size of readily releasable pool (RRP), levetiracetam is able to selectively enhance the stimulated GABA secretion in hippocampal neurons. Findings suggest that SV2 regulates RRP through impact on the number of docked/primed SVs. GENERAL SIGNIFICANCE: Methodology can be widely applied to study the stimulated neurosecretion in presynapse, regulation of SV docking, their Ca2+-dependent fusion with target membranes, quantitative analysis of expression of neuron-specific proteins, as well as for testing the efficiency of pre-selected designed neuroactive substances.


Assuntos
Levetiracetam/farmacologia , Neurossecreção/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Colecalciferol/deficiência , Endocitose , Exocitose , Fluorescência , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Modelos Animais , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Deficiência de Vitamina D/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
13.
J Leukoc Biol ; 104(1): 159-171, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29607536

RESUMO

Prostaglandin (PG) D2 is the ligand for the G-protein coupled receptors DP1 (D-type prostanoid receptor 1) and DP2 (also known as chemoattractant receptor homologous molecule, expressed on Th2 cells; CRTH2). Both, DP1 and DP2 are expressed on the cellular surface of eosinophils; although it has become quite clear that PGD2 induces eosinophil migration mainly via DP2 receptors, the role of DP1 in eosinophil responses has remained elusive. In this study, we addressed how DP1 receptor signaling complements the pro-inflammatory effects of DP2. We found that PGD2 prolongs the survival of eosinophils via a DP1 receptor-mediated mechanism that inhibits the onset of the intrinsic apoptotic cascade. The DP1 agonist BW245c prevented the activation of effector caspases in eosinophils and protected mitochondrial membranes from depolarization which-as a consequence-sustained viability of eosinophils. DP1 activation in eosinophils enhanced the expression of the anti-apoptotic gene BCL-XL , but also induced pro-inflammatory genes, such as VLA-4 and CCR3. In HEK293 cells that overexpress recombinant DP1 and/or DP2 receptors, activation of DP1, but not DP2, delayed cell death and stimulated proliferation, along with induction of serum response element (SRE), a regulator of anti-apoptotic, early-response genes. We conclude that DP1 receptors promote the survival via SRE induction and induction of pro-inflammatory genes. Therefore, targeting DP1 receptors, along with DP2, may contribute to anti-inflammatory therapy in eosinophilic diseases.


Assuntos
Apoptose/fisiologia , Eosinófilos/metabolismo , Receptores de Prostaglandina/metabolismo , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Transdução de Sinais , Transcrição Gênica
14.
Int J Cancer ; 142(1): 121-132, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875496

RESUMO

The putative cannabinoid receptor GPR55 has been shown to play a tumor-promoting role in various cancers, and is involved in many physiological and pathological processes of the gastrointestinal (GI) tract. While the cannabinoid receptor 1 (CB1 ) has been reported to suppress intestinal tumor growth, the role of GPR55 in the development of GI cancers is unclear. We, therefore, aimed at elucidating the role of GPR55 in colorectal cancer (CRC), the third most common cancer worldwide. Using azoxymethane (AOM)- and dextran sulfate sodium (DSS)-driven CRC mouse models, we found that GPR55 plays a tumor-promoting role that involves alterations of leukocyte populations, i.e. myeloid-derived suppressor cells and T lymphocytes, within the tumor tissues. Concomitantly, expression levels of COX-2 and STAT3 were reduced in tumor tissue of GPR55 knockout mice, indicating reduced presence of tumor-promoting factors. By employing the experimental CRC models to CB1 knockout and CB1 /GPR55 double knockout mice, we can further show that GPR55 plays an opposing role to CB1 . We report that GPR55 and CB1 mRNA expression are differentially regulated in the experimental models and in a cohort of 86 CRC patients. Epigenetic methylation of CNR1 and GPR55 was also differentially regulated in human CRC tissue compared to control samples. Collectively, our data suggest that GPR55 and CB1 play differential roles in colon carcinogenesis where the former seems to act as oncogene and the latter as tumor suppressor.


Assuntos
Carcinogênese/metabolismo , Neoplasias Colorretais/patologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Neoplasias Colorretais/metabolismo , Humanos , Camundongos , Camundongos Knockout , Receptor CB1 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo
15.
Front Med (Lausanne) ; 4: 104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28770200

RESUMO

Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention.

16.
J Crohns Colitis ; 10(9): 1087-95, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26928963

RESUMO

BACKGROUND AND AIMS: Prostaglandin [PG] D2 activates two receptors, DP and CRTH2. Antagonism of CRTH2 has been shown to promote anti-allergic and anti-inflammatory effects. We investigated whether CRTH2 may play a role in Crohn's disease [CD], focusing on eosinophils which are widely present in the inflamed mucosa of CD patients and express both receptors. METHODS: Using the 2,4,6-trinitrobenzenesulfonic acid [TNBS]-induced colitis model, involvement of CRTH2 in colitis was investigated by pharmacological antagonism, immunohistochemistry, Western blotting, immunoassay, and leukocyte recruitment. Chemotactic assays were performed with isolated human eosinophils. Biopsies and serum samples of CD patients were examined for presence of CRTH2 and ligands, respectively. RESULTS: High amounts of CRTH2-positive cells, including eosinophils, are present in the colonic mucosa of mice with TNBS colitis and in human CD. The CRTH2 antagonist OC-459, but not the DP antagonist MK0524, reduced inflammation scores and decreased TNF-α, IL-1ß, and IL-6 as compared with control mice. OC-459 inhibited recruitment of eosinophils into the colon and also inhibited CRTH2-induced chemotaxis of human eosinophils in vitro. Eosinophil-depleted ΔdblGATA knockout mice were less sensitive to TNBS-induced colitis, whereas IL-5 transgenic mice with lifelong eosinophilia were more severely affected than wild types. In addition, we show that serum levels of PGD2 and Δ(12)-PGJ2 were increased in CD patients as compared with control individuals. CONCLUSIONS: CRTH2 plays a pro-inflammatory role in TNBS-induced colitis. Eosinophils contribute to the severity of the inflammation, which is improved by a selective CRTH2 antagonist. CRTH2 may, therefore, represent an important target in the pharmacotherapy of CD.


Assuntos
Colite/imunologia , Colo/imunologia , Doença de Crohn/imunologia , Eosinófilos/metabolismo , Mucosa Intestinal/imunologia , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Células Th2/metabolismo , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Western Blotting , Estudos de Casos e Controles , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Doença de Crohn/induzido quimicamente , Doença de Crohn/metabolismo , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunoensaio , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Ácido Trinitrobenzenossulfônico
17.
Eur J Immunol ; 45(5): 1548-59, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25645675

RESUMO

Prostaglandin E2 (PGE2 ) protects against allergic responses via binding to prostanoid receptor EP4, which inhibits eosinophil migration in a PI3K/PKC-dependent fashion. The phosphoinositide-dependent protein kinase 1 (PDK1) is known to act as a downstream effector in PI3K signaling and has been implicated in the regulation of neutrophil migration. Thus, here we elucidate whether PDK1 mediates inhibitory effects of E-type prostanoid receptor 4 (EP4) receptors on eosinophil function. Therefore, eosinophils were isolated from human peripheral blood or differentiated from mouse BM. PDK1 signaling was investigated in shape change, chemotaxis, CD11b, respiratory burst, and Ca(2+) mobilization assays. The specific PDK1 inhibitors BX-912 and GSK2334470 prevented the inhibition by prostaglandin E2 and the EP4 agonist ONO-AE1-329. Depending on the cellular function, PDK1 seemed to act through PI3K-dependent or PI3K-independent mechanisms. Stimulation of EP4 receptors caused PDK1 phosphorylation at Ser396 and induced PI3K-dependent nuclear translocation of PDK1. EP4-induced inhibition of shape change and chemotaxis was effectively reversed by the Akt inhibitor triciribine. In support of this finding, ONO-AE1-329 induced a PI3K/PDK1-dependent increase in Akt phosphorylation. In conclusion, our data illustrate a critical role for PDK1 in transducing inhibitory signals on eosinophil effector function. Thus, our results suggest that PDK1 might serve as a novel therapeutic target in diseases involving eosinophilic inflammation.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Eosinófilos/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Transporte Ativo do Núcleo Celular , Animais , Antígeno CD11b/metabolismo , Sinalização do Cálcio , Forma Celular , Dinoprostona/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Humanos , Indazóis/farmacologia , Éteres Metílicos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Explosão Respiratória , Ribonucleosídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos
18.
J Immunol ; 193(2): 827-39, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24929001

RESUMO

Proresolution functions were reported for PGD2 in colitis, but the role of its two receptors, D-type prostanoid (DP) and, in particular, chemoattractant receptor homologous molecule expressed on Th2 cells (CRTH2), is less well defined. We investigated DP and CRTH2 expression and function during human and murine ulcerative colitis (UC). Expression of receptors was measured by flow cytometry on peripheral blood leukocytes and by immunohistochemistry and immunoblotting in colon biopsies of patients with active UC and healthy individuals. Receptor involvement in UC was evaluated in a mouse model of dextran sulfate sodium colitis. DP and CRTH2 expression changed in leukocytes of patients with active UC in a differential manner. In UC patients, DP showed higher expression in neutrophils but lower in monocytes as compared with control subjects. In contrast, CRTH2 was decreased in eosinophils, NK, and CD3(+) T cells but not in monocytes and CD3(+)/CD4(+) T cells. The decrease of CRTH2 on blood eosinophils clearly correlated with disease activity. DP correlated positively with disease activity in eosinophils but inversely in neutrophils. CRTH2 internalized upon treatment with PGD2 and 11-dehydro TXB2 in eosinophils of controls. Biopsies of UC patients revealed an increase of CRTH2-positive cells in the colonic mucosa and high CRTH2 protein content. The CRTH2 antagonist CAY10595 improved, whereas the DP antagonist MK0524 worsened inflammation in murine colitis. DP and CRTH2 play differential roles in UC. Although expression of CRTH2 on blood leukocytes is downregulated in UC, CRTH2 is present in colon tissue, where it may contribute to inflammation, whereas DP most likely promotes anti-inflammatory actions.


Assuntos
Colite Ulcerativa/metabolismo , Colo/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Adolescente , Adulto , Animais , Western Blotting , Complexo CD3/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Indóis/farmacologia , Células Matadoras Naturais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Prostaglandina D2/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Linfócitos T/metabolismo , Células Th2/metabolismo , Adulto Jovem
19.
J Allergy Clin Immunol ; 133(6): 1635-43.e1, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24365141

RESUMO

BACKGROUND: Sensitization to Hymenoptera venom without systemic sting reactions (SSRs) is commonly observed in the general population. Clinical relevance for a future sting has not yet been investigated. OBJECTIVE: We aimed to evaluate the effect of these debatable sensitizations with deliberate sting challenges and to monitor serologic changes for up to 2 years. METHODS: One hundred thirty-one challenges with bees and wasps were performed in 94 subjects with a hitherto irrelevant sensitization. The clinical outcome was recorded, and results of specific IgE (sIgE) determinations, skin tests, and basophil activation tests were correlated to the sting reaction. sIgE levels were monitored in reactors and nonreactors after 3 hours, 1 week, 4 weeks, and 1 year. RESULTS: Only 5 (5.3%) patients had SSRs, but 41 (43.6%) had large local reactions (LLRs) after the sting. Compared with the general population, there was a 9.5-fold higher risk for LLRs but not for SSRs. Three hours after the sting, sIgE levels slightly decreased, but none of the 94 subjects' results turned negative. After 1 week, sIgE levels already increased, increasing up to 3.5-fold (range, 0.2- to 34.0-fold) baseline levels after 4 weeks. To assess the clinical relevance of this increase, we randomly selected 18 patients for a re-sting. Again, 50% had an LLR, but none had an SSR. CONCLUSION: Although sensitization to Hymenoptera venoms was common, the risk of SSRs in sensitized subjects was low in our study. The sIgE level increase after the sting was not an indicator for conversion into symptomatic sensitization. Currently available tests were not able to distinguish between asymptomatic sensitization, LLRs, and SSRs.


Assuntos
Alérgenos/imunologia , Venenos de Artrópodes/efeitos adversos , Himenópteros/imunologia , Hipersensibilidade/imunologia , Mordeduras e Picadas de Insetos/imunologia , Adulto , Animais , Feminino , Humanos , Hipersensibilidade/diagnóstico , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Mordeduras e Picadas de Insetos/diagnóstico , Masculino , Avaliação de Resultados da Assistência ao Paciente , Testes Cutâneos , Fatores de Tempo , Adulto Jovem
20.
Methods Mol Biol ; 1032: 59-77, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23943444

RESUMO

Eosinophils are prominent in allergic diseases, and their effector functions are studied in numerous gene-deleted and transgenic mouse models. However, mouse eosinophils and human eosinophils are not structurally or functionally equivalent, and assays designed to evaluate the properties of human eosinophils may or may not be reliable or effective in experiments targeting their murine counterparts. In this chapter, we emphasize methods focused on detection, isolation, and functional assessment of eosinophils from mouse tissue and present a protocol that promotes the growth and differentiation of eosinophils from unselected mouse bone marrow progenitors. Overall, these protocols provide a scaffold on which the relative contributions of mouse eosinophils can be evaluated.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Eosinófilos/citologia , Animais , Eosinófilos/metabolismo , Humanos , Camundongos , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA