Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Prog Biophys Mol Biol ; 97(2-3): 312-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18394686

RESUMO

Starling's Law and the well-known end-systolic pressure-volume relationship (ESPVR) of the left ventricle reflect the effect of sarcomere length (SL) on stress (sigma) development and shortening by myocytes in the uniform ventricle. We show here that tetanic contractions of rat cardiac trabeculae exhibit a sigma-SL relationship at saturating [Ca2+] that depends on sarcomere geometry in a manner similar to skeletal sarcomeres and the existence of opposing forces in cardiac muscle shortened below slack length. The sigma-SL-[Ca2+]free relationships (sigma-SL-CaR) at submaximal [Ca2+] in intact and skinned trabeculae were similar, albeit that the sensitivity for Ca2+ of intact muscle was higher. We analyzed the mechanisms underlying the sigma-SL-CaR using a kinetic model where we assumed that the rates of Ca2+ binding by Troponin-C (Tn-C) and/or cross-bridge (XB) cycling are determined by SL, [Ca2+] or stress. We analyzed the correlation between the model results and steady state stress measurements at varied SL and [Ca2+] from skinned rat cardiac trabeculae to test the hypotheses that: (i) the dominant feedback mechanism is SL, stress or [Ca2+]-dependent; and (ii) the feedback mechanism regulates: Tn-C-Ca2+ affinity, XB kinetics or, unitary XB-force. The analysis strongly suggests that feedback of the number of strong XBs to cardiac Tn-C-Ca2+ affinity is the dominant mechanism that regulates XB recruitment. Application of this concept in a mathematical model of twitch-stress accurately reproduced the sigma-SL-CaR and the time course of twitch-stress as well as the time course of intracellular [Ca2+]i. Modeling of the response of the cardiac twitch to rapid stress changes using the above feedback model uniquely predicted the occurrence of [Ca2+]i transients as a result of accelerated Ca2+ dissociation from Tn-C. The above concept has important repercussions for the non-uniformly contracting heart in which arrhythmogenic Ca2+ waves arise from weakened areas in cardiac muscle. These Ca2+ waves can reversibly be induced in muscle with non-uniform excitation contraction coupling (ECC) by the cycle of stretch and release in the border zone between the damaged and intact regions. Stimulus trains induced propagating Ca2+ waves and reversibly induced arrhythmias. We hypothesize that rapid force loss by sarcomeres in the border zone during relaxation causes Ca2+ release from Tn-C and initiates Ca2+ waves propagated by the sarcoplasmic reticulum (SR). These observations suggest the unifying hypothesis that force feedback to Ca2+ binding by Tn-C is responsible for Starling's Law and the ESPVR in uniform myocardium and leads in non-uniform myocardium to a surge of Ca2+ released by the myofilaments during relaxation, which initiates arrhythmogenic propagating Ca2+ release by the SR.


Assuntos
Arritmias Cardíacas/fisiopatologia , Cálcio/fisiologia , Modelos Cardiovasculares , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Sarcômeros/fisiologia , Retículo Sarcoplasmático/fisiologia , Animais , Fenômenos Biomecânicos , Ratos , Troponina C/metabolismo
2.
Ann N Y Acad Sci ; 1123: 79-95, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18375580

RESUMO

Starling's law and the end-systolic pressure-volume relationship (ESPVR) reflect the effect of sarcomere length (SL) on the development of stress (sigma) and shortening by myocytes in the uniform ventricle. We show here that tetanic contractions of rat cardiac trabeculae exhibit a sigma-SL relationship at saturating [Ca2+] that depends on sarcomere geometry in a manner similar to that of skeletal sarcomeres and the existence of opposing forces in cardiac muscle shortened below slack length. The sigma-SL -[Ca2+](free) relationships (sigma-SL-Ca relationships) at submaximal [Ca2+] in intact and skinned trabeculae were similar, although the sensitivity for Ca2+ of intact muscle was higher. We analyzed the mechanisms underlying the sigma-SL-Ca relationship by using a kinetic model assuming that the rates of Tn-C Ca2+ binding and/or cross-bridge (XB) cycling are determined by either the SL, [Ca2+], or sigma. We analyzed the correlation between the model results and steady-state sigma measurements at varied SL at [Ca2+] from skinned rat cardiac trabeculae to test the hypotheses that the dominant feedback mechanism is SL-, sigma-, or [Ca2+]-dependent, and that the feedback mechanism regulates Tn-C Ca2+ affinity, XB kinetics, or the unitary XB force. The analysis strongly suggests that the feedback of the number of strong XBs to cardiac Tn-C Ca2+ affinity is the dominant mechanism regulating XB recruitment. Using this concept in a model of twitch-sigma accurately reproduced the sigma-SL-Ca relationship and the time courses of twitch sigma and the intracellular [Ca2+]i. The foregoing concept has equally important repercussions for the nonuniformly contracting heart, in which arrhythmogenic Ca2+ waves arise from weakened areas in the cardiac muscle. These Ca2+ waves can reversibly be induced with nonuniform excitation-contraction coupling (ECC) by the cycle of stretch and release in the border zone between the damaged and intact regions. Stimulus trains induced propagating Ca2+ waves and reversibly induced arrhythmias. We hypothesize that rapid force loss by the sarcomeres in the border zone during relaxation causes Ca2+ release from Tn-C and initiates Ca2+ waves propagated by the sarcoplasmic reticulum (SR). Modeling of the response of the cardiac twitch to rapid force changes using the feedback concept uniquely predicts the occurrence of [Ca2+]i transients as a result of accelerated Ca2+ dissociation from Tn-C. These results are consistent with the hypothesis that a force feedback to Ca2+ binding by Tn-C is responsible for Starling's law and the ESPVR in the uniform myocardium and leads to a surge of Ca2+ released by the myofilaments during relaxation in the nonuniform myocardium, which initiates arrhythmogenic propagating Ca2+ release by the SR.


Assuntos
Arritmias Cardíacas/fisiopatologia , Coração/fisiologia , Contração Miocárdica/fisiologia , Sarcômeros/fisiologia , Animais , Cálcio/fisiologia , Cinética , Modelos Biológicos , Ratos , Sarcômeros/ultraestrutura , Estresse Mecânico
3.
Ann N Y Acad Sci ; 1080: 248-67, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17132788

RESUMO

Ca(2+) release from the sarcoplasmic reticulum (SR) depends on the sarcoplasmic reticulum (SR) Ca(2+) load and the cytosolic Ca(2+) level. Arrhythmogenic Ca(2+) waves underlying triggered propagated contractions arise from Ca(2+) overloaded regions near damaged areas in the cardiac muscle. Ca(2+) waves can also be induced in undamaged muscle, in regions with nonuniform excitation-contraction (EC) coupling by the cycle of stretch and release in the border zone between the damaged and intact regions. We hypothesize that rapid shortening of sarcomeres in the border zone during relaxation causes Ca(2+) release from troponin C (TnC) on thin filaments and initiates Ca(2+) waves. Elimination of this shortening will inhibit the initiation of Ca(2+) waves, while SR Ca(2+) overload will enhance the waves. Force, sarcomere length (SL), and [Ca(2+)](i) were measured and muscle length was controlled. A small jet of Hepes solution with an extracellular [Ca(2+)] 10 mM (HC), or HC containing BDM, was used to weaken a 300 mum long muscle segment. Trains of electrical stimuli were used to induce Ca(2+) waves. The effects of small exponential stretches on triggered propagatory contraction (TPC) amplitude and propagation velocity of Ca(2+) waves (V(prop)) were studied. Sarcomere shortening was uniform prior to activation. HC induced spontaneous diastolic sarcomere contractions in the jet region and attenuated twitch sarcomere shortening; HC+ butanedione monoxime (BDM) caused stretch only in the jet region. Stimulus trains induced Ca(2+) waves, which started inside the HC jet region during twitch relaxation. Ca(2+) waves started in the border zone of the BDM jet. The initial local [Ca(2+)](i) rise of the waves by HC was twice that by BDM. The waves propagated at a V(prop) of 2.0 +/- 0.2 mm/sec. Arrhythmias occurred frequently in trabeculae following exposure to the HC jet. Stretch early during relaxation, which reduced sarcomere shortening in the weakened regions, substantially decreased force of the TPC (F(TPC)) and delayed Ca(2+) waves, and reduced V(prop) commensurate with the reduction F(TPC). These results are consistent with the hypothesis that Ca(2+) release from the myofilaments initiates arrhythmogenic propagating Ca(2+) release. Prevention of sarcomere shortening, by itself, did not inhibit Ca(2+) wave generation. SR Ca(2+) overload potentiated initiation and propagation of Ca(2+) waves.


Assuntos
Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Miocárdio/metabolismo , Sarcômeros/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Contração Miocárdica , Ratos , Retículo Sarcoplasmático/metabolismo
4.
Circ J ; 69(6): 739-45, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15914955

RESUMO

BACKGROUND: Nifekalant, a class III anti-arrhythmic agent, has been used clinically at serum concentrations of 1-10 micromol/L in patients with ventricular arrhythmias. However, the effect of nifekalant on triggered arrhythmias has not yet been established. METHODS AND RESULTS: Trabeculae were dissected from the right ventricles of 16 rat hearts. The force was measured using a silicon strain gauge, the membrane potential using ultra-compliant microelectrodes, and the regional intracellular Ca2+ ([Ca2+]i) using electrophoretically microinjected fura-2 and an image intensified CCD camera at a sarcomere length of 2.1 microm. Rapid cooling contractures (RCCs) were measured to estimate the Ca2+ content in the sarcoplasmic reticulum. Ca2+ waves and aftercontractions were measured after the induction of reproducible Ca2+ waves. Nifekalant at 1, 10 and 250 micromol/L increased significantly the action potential duration, the peak [Ca2+]i, the developed force and the amplitude of RCCs in a concentration-dependent manner (stimulus interval = 2 s, [Ca2+]o = 0.7 mmol/L, 26.0+/-0.2 degrees C). Nifekalant at 10 and 250 micromol/L increased significantly the velocity of Ca2+ waves with an enhancement of the aftercontractions (stimulus interval = 0.5 s for 7.5 s, [Ca2+]o = 1.8+/-0.1 mmol/L, 22.3+/-0.5 degrees C). CONCLUSIONS: Nifekalant, even at a therapeutic concentration, can increase muscle contraction, but may worsen triggered arrhythmias because of the acceleration of Ca2+ waves under Ca2+-overloaded conditions.


Assuntos
Antiarrítmicos/farmacologia , Cálcio/metabolismo , Pirimidinonas/farmacologia , Função Ventricular , Animais , Relação Dose-Resposta a Droga , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA