Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 4): 370-375, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30141422

RESUMO

During an investigation of the Mg-rich end of the Mg-Al-La system, a new ternary phase with the composition of (Al,Mg)3La was identified. The crystal structure of this phase was determined by conventional X-ray powder diffraction and transmission electron microscopy analysis and refined using high-resolution X-ray powder diffraction. The (Al,Mg)3La phase is found to have an orthorhombic structure with a space group of C2221 and lattice parameters of a = 4.3365 (1) Å, b = 18.8674 (4) Šand c = 4.4242 (1) Å, which is distinctly different from the binary Al3La phase (P63/mmc). The resolved structure of the (Al,Mg)3La phase is further verified by high-angle annular dark-field scanning transmission electron microscopy.

2.
Adv Mater ; 27(45): 7293-8, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26478451

RESUMO

It is demonstrated that metal-organic frameworks (MOFs) can be replicated in a biomimetic fashion from protein patterns. Bendable, fluorescent MOF patterns are formed with micrometer resolution under ambient conditions. Furthermore, this technique is used to grow MOF patterns from fingerprint residue in 30 s with high fidelity. This technique is not only relevant for crime-scene investigation, but also for biomedical applications.


Assuntos
Materiais Biomiméticos/química , Metais/química , Compostos Orgânicos/química , Proteínas/química , Microscopia Eletrônica de Varredura , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Dióxido de Silício/química , Raios Ultravioleta
3.
Nat Commun ; 6: 7240, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26041070

RESUMO

Enhancing the robustness of functional biomacromolecules is a critical challenge in biotechnology, which if addressed would enhance their use in pharmaceuticals, chemical processing and biostorage. Here we report a novel method, inspired by natural biomineralization processes, which provides unprecedented protection of biomacromolecules by encapsulating them within a class of porous materials termed metal-organic frameworks. We show that proteins, enzymes and DNA rapidly induce the formation of protective metal-organic framework coatings under physiological conditions by concentrating the framework building blocks and facilitating crystallization around the biomacromolecules. The resulting biocomposite is stable under conditions that would normally decompose many biological macromolecules. For example, urease and horseradish peroxidase protected within a metal-organic framework shell are found to retain bioactivity after being treated at 80 °C and boiled in dimethylformamide (153 °C), respectively. This rapid, low-cost biomimetic mineralization process gives rise to new possibilities for the exploitation of biomacromolecules.


Assuntos
Materiais Biomiméticos/química , Imidazóis/química , Compostos Organometálicos/química , Zinco/química , Cristalização , Proteínas
5.
J Synchrotron Radiat ; 22(2): 366-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25723938

RESUMO

This paper describes the quantitative measurement, by in situ synchrotron X-ray diffraction (S-XRD) and subsequent Rietveld-based quantitative phase analysis and thickness calculations, of the evolution of the PbO2 and PbSO4 surface layers formed on a pure lead anode under simulated copper electrowinning conditions in a 1.6 M H2SO4 electrolyte at 318 K. This is the first report of a truly in situ S-XRD study of the surface layer evolution on a Pb substrate under cycles of galvanostatic and power interruption conditions, of key interest to the mining, solvent extraction and lead acid battery communities. The design of a novel reflection geometry electrochemical flow cell is also described. The in situ S-XRD results show that ß-PbO2 forms immediately on the anode under galvanostatic conditions, and undergoes continued growth until power interruption where it transforms to PbSO4. The kinetics of the ß-PbO2 to PbSO4 conversion decrease as the number of cycles increases, whilst the amount of residual PbO2 increases with the number of cycles due to incomplete conversion to PbSO4. Conversely, complete transformation of PbSO4 to ß-PbO2 was observed in each cycle. The results of layer thickness calculations demonstrate a significant volume change upon PbSO4 to ß-PbO2 transformation.

6.
Chem Soc Rev ; 43(16): 5513-60, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24802634

RESUMO

Metal organic frameworks (MOFs) offer the highest surface areas per gram of any known material. As such, they epitomise resource productivity in uses where specific surface area is critical, such as adsorption, storage, filtration and catalysis. However, the ability to control the position of MOFs is also crucial for their use in devices for applications such as sensing, delivery, sequestration, molecular transport, electronics, energy production, optics, bioreactors and catalysis. In this review we present the current technologies that enable the precise positioning of MOFs onto different platforms. Methods for permanent localisation, dynamic localisation, and spatial control of functional materials within MOF crystals are described. Finally, examples of devices in which the control of MOF position and functionalisation will play a major technological role are presented.

7.
J Synchrotron Radiat ; 19(Pt 1): 39-47, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22186642

RESUMO

This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray-Farthing-Chen Cambridge electrowinning cell, featuring molten CaCl(2) as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA