Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
5.
Faraday Discuss ; 230: 292-307, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949573

RESUMO

In the effort to create a sustainable future economy, the ability to directly convert dilute gas-phase CO2 in waste gas streams into useful products would be a valuable tool, which may be achievable using Grignard reagents as both the capture and the conversion materials. The magnesium salt by-product can be recovered, and metallic magnesium regenerated through conventional high-efficiency electrolysis. This stoichiometric approach is known as metal looping, where the magnesium acts as the energy vector for the capture and conversion, allowing both to occur at room temperature and atmospheric pressure. However, the process has only previously been demonstrated with 12% CO2 in nitrogen mixtures. If we consider this process in a real post-combustion flue gas conversion scenario, the sensitivity of Grignard reagents to other gases (and water vapour) must be considered. While some of these gases and the water vapour are relatively easily removed, in most flue gas streams the most common other gas present, oxygen, would be far more challenging to excise, and oxygen is known to react with Grignard reagents, albeit slowly. In order to determine if higher oxygen concentrations could be tolerated, allowing the possibility of a variety of relatively inexpensive and possibly profitable direct CO2 conversion pathways to be developed, a range of industrially relevant CO2/O2 mixtures were made and carefully bubbled through phenylmagnesium bromide solutions.

6.
Materials (Basel) ; 14(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806093

RESUMO

Functionalized hypercrosslinked polymers (HCPs) with surface areas between 213 and 1124 m2/g based on a range of monomers containing different chemical moieties were evaluated for CO2 capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO2 uptake reaching maximum uptakes in under 60 s. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO2 stream (>20%) into a concentrated stream (>85%) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease with which readily synthesized functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO2 from N2 from industrially applicable simulated gas streams under more realistic conditions.

7.
Faraday Discuss ; 230(0): 247-270, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33908979

RESUMO

Assessment of the sustainability of CO2 utilisation technologies should encompass economic, environmental and social aspects. Though guidelines for economic and environmental assessment of CO2 utilisation (CDU) have been presented, a methodology for social assessment of CDU has not. Herewith, social impact assessment for CDU is systematically investigated, a methodological framework derived and examples of application given. Both process and deployment scenarios are found to be key factors in the assessment and the sourcing of raw material is observed to be a hotspot for social impacts within the assessed CDU technologies. This framework contributes a new aspect to the development of holistic sustainability assessment methodologies for CDU by enabling a triple helix to be created between life cycle assessment (LCA), techno-economic assessment (TEA) and social impact assessment (SIA). Therefore, the triple helix approach will enable trade-offs between environmental, economic and social impacts to be explored, ultimately enhancing effective decision making for CDU development and deployment.

13.
ChemSusChem ; 14(4): 995-1015, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33314601

RESUMO

Carbon capture and utilization (CCU) has been proposed as a sustainable alternative to produce valuable chemicals by reducing the global warming impact and depletion of fossil resources. To guarantee that CCU processes have environmental advantages over conventional production processes, thorough and systematic environmental impact analyses must be performed. Life-Cycle Assessment (LCA) is a robust methodology that can be used to fulfil this aim. In this context, this article aims to review the life-cycle environmental impacts of several CCU processes, focusing on the production of methanol, methane, dimethyl ether, dimethyl carbonate, propane and propene. A systematic literature review is used to collect relevant published evidence of the environmental impacts and potential benefits. An analysis of such information shows that CCU generally provides a reduction of environmental impacts, notably global warming/climate change, compared to conventional manufacturing processes of the same product. To achieve such environmental improvements, renewable energy must be used, particularly to produce hydrogen from water electrolysis. Importantly, different methodological choices are identified that are being used in the LCA studies, making results not comparable. There is a clear need to harmonize LCA methods for the analyses of CCU systems, and more importantly, to document and justify such methodological choices in the LCA report.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA