Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 664: 329-337, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479269

RESUMO

Co9S8 has been extensively studied as a promising catalyst for water electrolysis. Doping Co9S8 with Fe improves its oxygen evolution reaction (OER) performance by regulating the catalyst self-reconfigurability and enhancing the absorption capacity of OER intermediates. However, the poor alkaline hydrogen evolution reaction (HER) properties of Co9S8 limit its application in bifunctional water splitting. Herein, we combined Fe doping and sulfur vacancy engineering to synergistically enhance the bifunctional water-splitting performance of Co9S8. The as-synthesized Co6Fe3S8 catalyst exhibited excellent OER and HER characteristics with low overpotentials of 250 and 84 mV, respectively. It also resulted in the low Tafel slopes of 135 mV dec-1 for the OER and 114 mV dec-1 for the HER. A two-electrode electrolytic cell with Co6Fe3S8 used as both the cathode and anode produced a current density of 10 mA cm-2 at a low voltage of only 1.48 V, maintaining high stability for 100 h. The results of in/ex-situ experiments indicated that the OER process induced electrochemical reconfiguration, forming CoOOH/FeOOH active species on the catalyst surface to enhance its OER performance. Density functional theory (DFT) simulations revealed that Fe doping and the presence of unsaturated coordination metal sites in Co6Fe3S8 promoted H2O and H* adsorption for the HER. The findings of this study can help develop a strategy for designing highly efficient bifunctional water splitting electrocatalysts.

2.
Nanomicro Lett ; 14(1): 193, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149584

RESUMO

The latest view suggests the inactive core, surface pulverization, and polysulfide shuttling effect of metal sulfides are responsible for their low capacity and poor cycling performance in sodium-ion batteries (SIBs). Whereas overcoming the above problems based on conventional nanoengineering is not efficient enough. In this work, erythrocyte-like CuS microspheres with an elastic buffering layer of ultrathin polyaniline (PANI) were synthesized through one-step self-assembly growth, followed by in situ polymerization of aniline. When CuS@PANI is used as anode electrode in SIBs, it delivers high capacity, ultrahigh rate capability (500 mAh g-1 at 0.1 A g-1, and 214.5 mAh g-1 at 40 A g-1), and superior cycling life of over 7500 cycles at 20 A g-1. A series of in/ex situ characterization techniques were applied to investigate the structural evolution and sodium-ion storage mechanism. The PANI swollen with electrolyte can stabilize solid electrolyte interface layer, benefit the ion transport/charge transfer at the PANI/electrolyte interface, and restrain the size growth of Cu particles in confined space. Moreover, finite element analyses and density functional simulations confirm that the PANI film effectively buffers the volume expansion, suppresses the surface pulverization, and traps the polysulfide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA