Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(31): 33702-33709, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39130592

RESUMO

Aiming at the problems of current similar hydrogel plugging agents, such as poor breaking performance, nonspontaneous degradation, and reservoir pollution which have been plaguing their application in temporary plugging operations, this study has synthesized a cross-linking agent for hydrogels with dimethylaminoethyl acrylate and dibromo-p-xylene as raw materials. With Fourier transform infrared, 1H nuclear magnetic resonance, and thermogravimetric analyses as representations of the structure and thermal stability of the cross-linking agent, a set of self-degrading hydrogel systems has been developed with the cross-linking agent as the core so as to make evaluations on the temperature resistance, plugging performance, and core damage performance of the hydrogel and conduct a study on its gelation kinetics. The research results show that the cross-linking agent shows good thermal stability. When applied in the hydrogel system, the hydrogel has shown high temperature resistance, maintaining gel strength for 5-10 days at 50-90 °C, with viscosity after complete degradation lower than 10 mPa·s. The excellent bearing strength of the hydrogel system has led to a core damage rate below 5%. The study on gelation kinetics of the hydrogel system shows that, with the increase in the concentration of the cross-linking agent, the gelation time of the hydrogel system is shortened, with the reaction order between the cross-linker concentration and the gelation time at about 0.6 under the condition of 50-90 °C.

2.
Gels ; 10(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39057468

RESUMO

Although various degradable gel materials have been developed for temporary plugging in oil fields, they often degrade too quickly in high-temperature environments. To address this issue, an unstable crosslinker was synthesized to prepare a high-temperature degradable gel. This gel does not degrade excessively fast at high temperatures. Temperature and crosslinker concentration are the primary factors influencing gel degradation time, followed by monomer and initiator concentrations. Increased temperature and decreased crosslinker concentration both reduce degradation time, which can be adjusted within the range of 90-130 °C by varying the crosslinker concentration. The molecular structure and thermal stability of the degradable gel were analyzed using FTIR, 13C NMR, and TG. Furthermore, the viscoelastic properties, compressive performance, plugging performance, and core damage performance of the gel were evaluated. Within the test range of 0.1-1000 Pa, the storage modulus is higher than the loss modulus. The gel prepared at 130 °C exhibited a compressive stress of 0.25 MPa at 50% strain. The plugging pressure of the gel in sand-filled tubes with varying permeabilities (538.2-2794.1 mD) exceeded 15 MPa while maintaining a core damage rate below 5%. SEM analysis indicated that the degradation mechanism of the gel may involve the collapse of its three-dimensional network structure due to the hydrolysis of amide groups in the crosslinker. The viscosity of the degradation liquid was below 11 mPa·s, enabling it to be brought back to the surface with the formation fluid without the need for further breaking operations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36833538

RESUMO

The co-pyrolysis of oily sludge and walnut shell is a reliable method for solid waste treatment and waste recycling. In this paper, a thermogravimetric analysis was used to study the thermodynamics and synergy effect of oily sludge (OS) and walnut shell (WS) at four heating rates (10, 20, 30, and 40 °C/min) in the temperature range from 50-850 °C. Two model-free methods (FWO and KAS) were used to calculate the activation energy. The results showed that the heating rate had no significant effect on the pyrolysis process. The addition of walnut shell improved the pyrolysis process of the samples. Mixture 1OS3WS had a synergy effect, while other blends showed an inhibitory effect. The synergy effect of co-pyrolysis was strongest when the mass ratio of oily sludge was 25%. The activation energy of the Zn-ZSM-5/25 catalyst was the lowest, and the residual substances were the least, indicating that the Zn-ZSM-5/25 was beneficial to the co-pyrolysis of oily sludge and walnut shell. The analysis of catalytic pyrolysis products by Py-GC/MS found that co-pyrolysis was beneficial to the generation of aromatic hydrocarbons. This study provided a method for the resource utilization of hazardous waste and biomass waste, which was conducive to the production of aromatic chemicals with added value while reducing environmental pollution.


Assuntos
Juglans , Esgotos , Pirólise , Óleos , Resíduos Sólidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA