Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Chem Commun (Camb) ; 60(41): 5415-5418, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38683147

RESUMO

Two structurally new Lindqvist hexaniobate-templated silver thiolate clusters, [Nb6O19@Ag45(iPrS)23(CH3COO)14] (Ag45) and (H3O)4[Nb6O19@Ag41KS2.5O2(H2O)7.5(iPrS)24(CH3COO)5] (Ag41), were synthesized using a facile one-pot solvothermal approach. Single crystal X-ray diffraction analyses revealed the presence of a classical Lindqvist-type [Nb6O19]8- anion template, with iPrS- and CH3COO- surface-protecting ligands in both silver clusters, which can further form two-dimensional Ag45 assembly and one-dimensional Ag41 chain packing structures. Both Ag45 and Ag41 clusters exhibited intriguing photothermal conversion properties and temperature-dependent emission behavior.

2.
J Environ Manage ; 356: 120741, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522273

RESUMO

Semi-permeable membrane-covered high-temperature aerobic composting (SMHC) is a suitable technology for the safe treatment and disposal of organic solid waste as well as for improving the quality of the final compost. This paper presents a comprehensive summary of the impact of semi-permeable membranes centered on expanded polytetrafluoroethylene (e-PTFE) on compost physicochemical properties, carbon and nitrogen transformations, greenhouse gas emission reduction, microbial community succession, antibiotic removal, and antibiotic resistance genes migration. It is worth noting that the semi-permeable membrane can form a micro-positive pressure environment under the membrane, promote the uniform distribution of air in the heap, reduce the proportion of anaerobic area in the heap, improve the decomposition rate of organic matter, accelerate the decomposition of compost and improve the quality of compost. In addition, this paper presents several recommendations for future research areas in the SMHC. This investigation aims to guide for implementation of semi-permeable membranes in high-temperature aerobic fermentation processes by systematically compiling the latest research progress on SMHC.


Assuntos
Compostagem , Temperatura , Resíduos Sólidos , Carbono , Fermentação , Nitrogênio , Solo , Esterco
3.
Microb Cell Fact ; 23(1): 27, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238808

RESUMO

BACKGROUND: Pickled mustard, the largest cultivated vegetable in China, generates substantial waste annually, leading to significant environmental pollution due to challenges in timely disposal, leading to decomposition and sewage issues. Consequently, the imperative to address this concern centers on the reduction and comprehensive resource utilization of raw mustard waste (RMW). To achieve complete and quantitative resource utilization of RMW, this study employs novel technology integration for optimizing its higher-value applications. RESULTS: Initially, subcritical hydrothermal technology was applied for rapid decomposition, with subsequent ammonia nitrogen removal via zeolite. Thereafter, photosynthetic bacteria, Rhodopseudomonas palustris, were employed to maximize hydrogen and methane gas production using various fermentation enhancement agents. Subsequent solid-liquid separation yielded liquid fertilizer from the fermented liquid and soil amendment from solid fermentation remnants. Results indicate that the highest glucose yield (29.6 ± 0.14) was achieved at 165-173℃, with a total sugar content of 50.2 g/L and 64% glucose proportion. Optimal ammonia nitrogen removal occurred with 8 g/L zeolite and strain stable growth at 32℃, with the highest OD600 reaching 2.7. Several fermentation promoters, including FeSO4, Neutral red, Na2S, flavin mononucleotide, Nickel titanate, Nickel oxide, and Mixture C, were evaluated for hydrogen production. Notably, Mixture C resulted in the maximum hydrogen production (756 mL), a production rate of 14 mL/h, and a 5-day stable hydrogen production period. Composting experiments enhanced humic acid content and organic matter (OM) by 17% and 15%, respectively. CONCLUSIONS: This innovative technology not only expedites RMW treatment and hydrogen yield but also substantially enriches soil fertility. Consequently, it offers a novel approach for low-carbon, zero-pollution RMW management. The study's double outcomes extend to large-scale RMW treatment based on the aim of full quantitative resource utilization of RMW. Our method provides a valuable reference for waste management in similar perishable vegetable plantations.


Assuntos
Solo , Zeolitas , Hidrogênio , Amônia , Mostardeira , Nitrogênio , Glucose
4.
Trends Biotechnol ; 42(1): 91-103, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37507294

RESUMO

Single cell modification or hybridization technology has become a popular direction in bioengineering in recent years, with applications in clean energy, environmental stewardship, and sustainable human development. Here, we draw attention to nanoarmor, a representative achievement of cytoprotection and functionalization technology. The fundamental principles of nanoarmor need to be studied with input from multiple disciplines, including biology, chemistry, and material science. In this review, we explain the role of nanoarmor and review progress in its applications. We also discuss three main challenges associated with its development: self-driving ability, heterojunction characteristics, and mineralization formation. Finally, we propose a preliminary classification system for nanoarmor.


Assuntos
Citoproteção , Nanotecnologia , Humanos
5.
Angew Chem Int Ed Engl ; 62(49): e202309971, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37877336

RESUMO

Clusters that can be experimentally precisely characterized and theoretically accurately calculated are essential to understanding the relationship between material structure and function. Here, we propose the concept of "supraclusters", which aim to connect "supramolecules" and "suprananoparticles" as well as reveal the unique assembly behavior of "supraclusters" with nanoparticle size at the molecular level. The implementation of supraclusters is full of challenges due to the difficulty in satisfying the ordered connectivity of clusters due to their abundant and dispersed hydrogen bonding sites. By solvothermal synthesis under a high catechol (H2 CATs) content, we successfully isolated a series of triangular {Al6 M3 } cluster compounds possessing brucite-like structural features. Interestingly, eight {Al6 M3 } clusters form 72-fold strong hydrogen bonding truncatedhexahedron Archimedean {Al6 M3 }8 supracluster cage (abbreviated as H-tcu). Surprisingly, the solution stability of the H-tcu was further proved by electrospray ionization mass spectrometry (ESI-MS) characterization. Therefore, it is not difficult to explain the reason for assembly of H-tcu into edge-directed and vertex-directed isomers. These porous supraclusters can be obtained by scale-up synthesis and exhibit a noticeable catalysis effect towards the condensation of acetone and p-nitrobenzaldehyde. As an intermediate state of supramolecule and suprananoparticle, the supracluster assembly can enrich the cluster chemistry and bring new structural types.

6.
Inorg Chem ; 62(42): 17150-17156, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37819263

RESUMO

In recent years, luminescent materials have received a great deal of attention due to their wide range of applications. However, exploring a simple solution to overcome the fluorescence quenching resulting from the aggregation of conventional organic fluorophores remains a valuable area of investigation. In this study, we successfully constructed two metallo-cages, namely, SA and SB, through coordination-driven self-assemblies of the triphenylamine (TPA)-based donor L with different diplatinum(II) acceptors LA and LB, respectively. These metallo-cages take advantage of their steric nature and curved conformation to more effectively limit the free rotation of the benzene ring and hinder π-π stacking in the solid state, which successfully inhibited fluorescence quenching and realizing highly efficient luminescent properties. Therefore, this work offers a new design strategy for preparing materials with excellent luminescent properties.

7.
Sensors (Basel) ; 23(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514703

RESUMO

Real-time fault detection in power distribution networks has become a popular issue in current power systems. However, the low power and computational capabilities of edge devices often fail to meet the requirements of real-time detection. To overcome these challenges, this paper proposes a lightweight algorithm, named Comprehensive-YOLOv5, for identifying defects in distribution networks. The proposed method focuses on achieving rapid localization and accurate identification of three common defects: insulator without loop, cable detachment from the insulator, and cable detachment from the spacer. Based on the You Only Look Once version 5 (YOLOv5) algorithm, this paper adopts GhostNet to reconstruct the original backbone of YOLOv5; introduces Bidirectional Feature Pyramid Network (BiFPN) structure to replace Path Aggregation Network (PANet) for feature fusion, which enhances the feature fusion ability; and replaces Generalized Intersection over Union GIOU with Focal Extended Intersection over Union (Focal-EIOU) to optimize the loss function, which improves the mean average precision and speed of the algorithm. The effectiveness of the improved Comprehensive-YOLOv5 algorithm is verified through a "morphological experiment", while an "algorithm comparison experiment" confirms its superiority over other algorithms. Compared with the original YOLOv5, the Comprehensive-YOLOv5 algorithm improves mean average precision (mAP) from 88.3% to 90.1% and increases Frames per second (FPS) from 20 to 52 frames. This improvement significantly reduces false positives and false negatives in defect detection. Consequently, the proposed algorithm enhances detection speed and improves inspection efficiency, providing a viable solution for real-time detection and deployment at the edge of power distribution networks.

8.
Biotechnol Biofuels Bioprod ; 16(1): 109, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37400889

RESUMO

Because the thermodynamic property is closer to gasoline, advanced biofuels (C ≥ 6) are appealing for replacing non-renewable fossil fuels using biosynthesis method that has presented a promising approach. Synthesizing advanced biofuels (C ≥ 6), in general, requires the expansion of carbon chains from three carbon atoms to more than six carbon atoms. Despite some specific biosynthesis pathways that have been developed in recent years, adequate summary is still lacking on how to obtain an effective metabolic pathway. Review of biosynthesis pathways for expanding carbon chains will be conducive to selecting, optimizing and discovering novel synthetic route to obtain new advanced biofuels. Herein, we first highlighted challenges on expanding carbon chains, followed by presentation of two biosynthesis strategies and review of three different types of biosynthesis pathways of carbon chain expansion for synthesizing advanced biofuels. Finally, we provided an outlook for the introduction of gene-editing technology in the development of new biosynthesis pathways of carbon chain expansion.

9.
ACS Nano ; 17(12): 11607-11615, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37288740

RESUMO

Photochemical methods are effective for controllable synthesis of silver nanoparticles with specific sizes and shapes. Whether they are capable of fabricating Ag nanoclusters (NCs) with atomic precision is yet to be proved. In this work, we synthesize an atomically precise Ag NC, [Ag25(4-MePhC≡C)20(Dpppe)3](SbF6)3 (Ag25), via a process mediated by visible light. Its total structure is determined by X-ray crystallography. The investigation of the mechanism reveals that the formation of Ag25 is triggered by a photoinduced electron-transfer (PET) process. An electron of certain amines is excited by light with wavelength shorter than 455 nm and transferred to Ag+. The amine is oxidized to the corresponding amine N-oxide. Such a PET process is supported by experimental and density functional theory studies. To expand the application scope of the photochemical method, another three NCs, [Ag19(4-tBuPhC≡C)14(Dpppe)3](SbF6)3 (Ag19), [Ag32(4-tBuPhC≡C)22(Dppp)4](SbF6)3 (Ag32), and bimetallic [Ag22Au3(4-tBuPhC≡C)20(Dpppe)3](SbF6)3 (Ag22Au3), are produced by replacing certain ingredients. Furthermore, since the formation of Ag19 can be regarded as a photochromatic process, a facile amine visual detection method is also presented based on this mechanism.

10.
J Phys Chem Lett ; 14(22): 5163-5171, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37253105

RESUMO

Surface-enhanced Raman spectroscopy (SERS) has been widely applied in the identification and characterization of DNA structures with high efficiency. Especially, the SERS signals of the adenine group have exhibited high detection sensitivity in several biomolecular systems. However, there is still no unanimous conclusion regarding the interpretation of some special kinds of SERS signals of adenine and its derivatives on silver colloids and electrodes. This Letter presents a new photochemical azo coupling reaction for adenyl residues, in which the adenine is selectively oxidized to (E)-1,2-di(7H-purin-6-yl) diazene (azopurine) in the presence of silver ions, silver colloids, and electrodes of nanostructures under visible light irradiation. The product, azopurine, is first found to be responsible for the SERS signals. This photoelectrochemical oxidative coupling reaction of adenine and its derivatives is promoted by plasmon-mediated hot holes and is regulated by positive potentials and pH of solutions, which opens up new avenues for studying azo coupling in the photoelectrochemistry of adenine-containing biomolecules on electrode surfaces of plasmonic metal nanostructures.

11.
Int J Biol Macromol ; 239: 124277, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011747

RESUMO

Herein, the manganese-oxides-coated magnetic microcrystalline cellulose (MnOx@Fe3O4@MCC) was prepared by coprecipitation and subsequently modified with KMnO4 solution at room temperature, which was in turn applied for the removal of Pb(II) from wastewater. The adsorption properties of Pb(II) on MnOx@Fe3O4@MCC were investigated. The kinetics and isothermal data of Pb(II) were described well by the Pseudo-second-order model and the Langmuir isotherm model, respectively. At pH = 5, 318 K, the Langmuir maximum Pb(II) adsorption capacity of MnOx@Fe3O4@MCC was 446.43 mg/g, which is higher than many documented bio-based adsorbents. The results of Fourier transform infra-red and X-ray photoelectron spectroscopy indicated that the adsorption mechanisms for Pb(II) mainly involved surface complexation, ion exchange, electrostatic interaction and precipitation. Interestingly, the increased amount of carboxyl group on the surface of microcrystalline cellulose modified by KMnO4 was one of the important reasons for the high Pb(II) adsorption performance of MnOx@Fe3O4@MCC. Furthermore, MnOx@Fe3O4@MCC exhibited excellent activity (70.6 %) after five consecutive regeneration cycles, indicating its high stability and reusability. Endorsing to the cost-effectiveness, environmentally friendliness, and reusable nature, MnOx@Fe3O4@MCC can be counted as a great alternative contender for the remediation of Pb(II) from industrial wastewater.


Assuntos
Chumbo , Poluentes Químicos da Água , Adsorção , Manganês , Águas Residuárias , Óxidos/química , Fenômenos Magnéticos , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
12.
Nanoscale ; 15(18): 8245-8254, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37073517

RESUMO

The first series of monocarboxylate-protected superatomic silver nanoclusters was synthesized and fully characterized by X-ray diffraction, fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and electrospray ionization mass spectrometry (ESI-MS). Specifically, compounds [Ag16(L)8(9-AnCO2)12]2+ (L = Ph3P (I), (4-ClPh)3P (II), (2-furyl)3P (III), and Ph3As (IV)) were prepared by a solvent-thermal method under alkaline conditions. These clusters exhibit a similar unprecedented structure containing a [Ag8@Ag8]6+ metal kernel, of which the 2-electron superatomic [Ag8]6+ inner core shows a flattened and puckered hexagonal bipyramid of S6 symmetry. Density functional theory calculations provide a rationalization of the structure and stability of these 2-electron superatoms. Results indicate that the 2 superatomic electrons occupy a superatomic molecular orbital 1S that has a substantial localization on the top and bottom vertices of the bipyramid. The π systems of the anthracenyl groups, as well as the 1S HOMO, are significantly involved in the optical and photothermal behavior of the clusters. The four characterized nanoclusters show high photothermal conversion performance in sunlight. These results show that the unprecedented use of mono-carboxylates in the stabilization of Ag nanoclusters is possible, opening the door for the introduction of various functional groups on their cluster surface.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122501, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801741

RESUMO

Thorium, as a radioactive element, is always associated with rare earth in nature. So it is an exacting challenge to recognize thorium ion (Th4+) in the presence of lanthanide ions because of their overlapping ionic radii. Here three simple acylhydrazones (AF, AH and ABr, with the functional group fluorine, hydrogen and bromine, respectively) are explored for Th4+ detection. They all exhibit excellent "turn-on" fluorescence selectivity toward Th4+ among f-block ions in aqueous medium with outstanding anti-interference abilities, where the coexistence of lanthanide and uranyl ions in addition with other ordinary metal ions have negligible effects during Th4+ detection. Interestingly, pH variation from 2 to 11 has no significant influence on the detection. Among the three sensors, AF displays the highest sensitivity to Th4+ and ABr the lowest with the emission wavelengths in the order of λAF-Th < λAH-Th < λABr-Th. The detection limit of AF to Th4+ can reach 29 nM (pH = 2) with a binding constant of 6.64 × 109 M-2. Response mechanism for AF toward Th4+ is proposed based on the results of HR-MS, 1H NMR and FT-IR spectroscopies together with DFT calculations. This work provides important implications on the development of related series of ligands in nuclide ions detection and future separation from lanthanide ions.

14.
Environ Monit Assess ; 194(10): 728, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064812

RESUMO

Previous studies have shown that the soil microbial population and soil enzyme activity are seriously affected by fracturing flow-back fluid (FFBF) from the shale gas mining process. However, the toxic effect of FFBF on specific bacteria, fungi, and plankton has not been systematically confirmed in detail. In this paper, a toxic effect evaluation of FFBF was conducted using the representative toxicity test organisms Vibrio fischeri, Daphnia, Aspergillus niger, and S. cerevisiae, indicating that FFBF can significantly decrease the survival rate of these species. The results also showed that there was a significant negative correlation between the concentration of some inorganic toxicity factors and the survival rate when Daphnia was used as the test organism, indicating that the toxicity degree order for these inorganic toxicity factors is Ba2+ > Li+ > As3+ > Cl- > Cu2+ > Rb2+ > Ga2+ > V2+ > Na+. In addition, other toxic factors, including polycyclic aromatic hydrocarbons (PAHs), were also determined, and the order of toxic effects with a negative correlation to the Daphnia survival rate was confirmed. These results showed that the biological toxicity of FFBF was caused not only by inorganic toxicity factors such as heavy metals but also by organic compounds such as PAHs. The results not only provide a significant reference value for the systematic assessment of biological toxicity by FFBF, but they also have great significance for developing approaches to appropriate FFBF treatment.


Assuntos
Aliivibrio fischeri , Hidrocarbonetos Policíclicos Aromáticos , Animais , Aspergillus , Aspergillus niger , Daphnia , Monitoramento Ambiental , Saccharomyces cerevisiae
15.
Anal Chem ; 94(40): 13719-13727, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36173369

RESUMO

Based on the Venturi self-pumping effect, real-time sniffing with mass spectrometry (R-sniffing MS) is developed as a tool for direct and real-time mass spectrometric analysis of both gaseous and solid samples. It is capable of dual-mode operation in either gaseous or solid phase, with the corresponding techniques termed as Rg-sniffing MS and Rs-sniffing MS, respectively. In its gaseous mode, Rg-sniffing MS is capable of analyzing a gaseous mixture with response time (0.8-2.1 s rise time and 7.3-9.6 s fall time), spatial resolution (<80 µm), three-dimensional diffusion imaging, and aroma distribution imaging of red pepper. In its solid mode, an appropriate solvent droplet desorbs the sample from a solid surface, followed by the aspiration of the mixture using the Venturi self-pumping effect into the mass spectrometer, wherein it is ionized by a standard ion source. Compared with the desorption electrospray ionization (DESI) technique, Rs-sniffing MS demonstrated considerably improved limit of detection (LOD) values for arginine (0.07 µg/cm2 Rs-sniffing vs 1.47 µg/cm2 DESI), thymopentin (0.10 µg/cm2 vs 2.67 µg/cm2), and bacitracin (0.16 µg/cm2 vs 2.28 µg/cm2). Rs-sniffing is applicable for the detection of C60(OCH3)6Cl-, an intermediate in the methoxylation reaction involving C60Cl6 (solid) and methanol (liquid). The convenient and highly sensitive R-sniffing MS has a characteristic separation of desorption from the ionization process, in which the matrix atmosphere of desorption can be interfaced by a pipe channel and self-pumped by the Venturi effect with consequent integration using a standard ion source. The R-sniffing MS operates in a voltage-, heat-, and vibration-free environment, wherein the analyte is ionized by a standard ion source. Consequently, a wide range of samples can be analyzed simultaneously by the R-sniffing MS technique, regardless of their physical state.


Assuntos
Gases , Espectrometria de Massas por Ionização por Electrospray , Arginina , Bacitracina , Metanol , Solventes , Espectrometria de Massas por Ionização por Electrospray/métodos , Timopentina
16.
ACS Nano ; 16(3): 4500-4507, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35230817

RESUMO

Metalloligand strategy has been well recognized in the syntheses of heterometallic coordination polymers; however, such a strategy used in the assembly of silver nanoclusters is not broadly available. Herein, we report the stepwise syntheses of a family of halogen-templated Ag42 nanoclusters (Ag42c-Ag42f) based on MoVI-anchored p-tert-butylthiacalix[4]arene (H4TC4A) as a metalloligand (hereafter named MoO3-TC4A). X-ray crystallography demonstrates that they are similar C3-symmetric silver-organic nanocalices capped by six MoO3-TC4A metalloligands, which are evenly distributed up and down the base of 42 silver atoms. These nanoclusters can be disassembled to six bowl-shaped [Ag11(MoO3-TC4A)(RS)3] secondary building units (SBUs, R = Et or nPr), which are fused together in a face-sharing fashion surrounding Cl- or Br- as a central anion template. The electrospray mass spectrometry (ESI-MS) indicates their high stabilities in solution and verifies the formation of the MoO3-TC4A metalloligand, thereby rationalizing the overall stepwise assembly process for them. Moreover, Ag42c shows lower cytotoxicity and better activity against the HepG-2 cell line than MCF-7 and BGC-823. These results not only exemplify the effectiveness of a thiacalix[4]arene-based metalloligand in the assembly of silver nanoclusters but also give us profound insight about the step-by-step assembly process in silver nanoclusters.

18.
Small Methods ; 5(3): e2000777, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34927816

RESUMO

The assembly of gigantic heterometallic metal clusters remains a great challenge for synthetic chemistry. Herein, based on the slow release strategy of lanthanide ions and in situ formation of lacunary polyoxometalates, two giant 3d-4f polyoxometalate inorganic clusters [LaNi12 W35 Sb3 P3 O139 (OH)6 ]23- (LaNi12 ) and [La10 Ni48 W140 Sb16 P12 O568 (OH)24 (H2 O)20 ]86- (La10 Ni48 ) are obtained. The nanoscopic inorganic cluster La10 Ni48 possesses a super tetrahedron structure, which can be viewed as assembly from four LaNi12 molecules encapsulating a central [La6 (SbO3 )4 (H2 O)20 ]6+ octahedron core. This giant aesthetic La10 Ni48 tetrahedron containing 214 metal ions is the largest 3d-4f cluster reported thus far in polyoxometalate system. More interestingly, the LaNi12 and La10 Ni48 display high stability in solution and La10 Ni48 displays excellent proton conductivity.

19.
Environ Monit Assess ; 194(1): 2, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862584

RESUMO

Soil heavy metals pollution can cause many serious environment problems because of involving a very complex pollution process for soil health. Therefore, it is very important to explore methods that can effectively evaluate heavy metal pollution. Researchers were actively looking for new ideas and new methods for evaluating and predicting levels of soil heavy metal pollution. The study on microbial communities is one of the effective methods using gene chip technology. Gene chip technology, as a high-throughput metagenomics analysis technique, has been widely used for studying the structure and function of complex microbial communities in different polluted environments from different pollutants, including the soil polluted by heavy metals. However, there is still a lack of a systematic summarization for the polluted soil by heavy metals. This paper systematically analyzed soil heavy metals pollution via reviewing previous studies on applying gene chip technology, including single species, tolerance mechanisms, enrichment mechanisms, anticipation and evaluation of soil remediation, and multi-directional analysis. The latest gene chip technologies and corresponding application cases for discovering critical species and functional genes via analyzing microbial communities and evaluating heavy metal pollution of soil were also introduced in this paper. This article can provide scientific guidance for researchers actively investigating the soil polluted by heavy metals.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Metais Pesados/análise , Análise de Sequência com Séries de Oligonucleotídeos , Solo , Poluentes do Solo/análise , Tecnologia
20.
Environ Monit Assess ; 193(12): 786, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34755223

RESUMO

A large amount of shale gas fracturing flowback fluid (FFBF) from the process of shale gas exploitation causes obvious ecological harm to health of soil and water. However, biological hazard of soil microbial populations by fracturing flowback fluid remains rarely reported. In this study, the microbiological compositions were assessed via analyzing diversity of microbial populations. The results showed significant differences between polluted soil by fracturing flowback fluid and unpolluted soil in different pH and temperature conditions. And then, the microbe-index of biological integrity (M-IBI) was used to evaluate the toxicity of the fracturing flowback fluid based on analysis of microbial integrity. The results showed that polluted soil lacks key microbial species known to be beneficial to soil health, including denitrifying bacteria and cellulose-decomposing bacteria, and 35 °C is a critical value for estimating poor and sub-healthy level of damage to microbial integrity by fracturing flowback fluid. Our results provide a valuable reference for the evaluation of soil damage by fracturing flowback fluid.


Assuntos
Fraturamento Hidráulico , Microbiota , Monitoramento Ambiental , Gás Natural , Solo , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA