Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 24189, 2024 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407029

RESUMO

Wheat is a crucial crop worldwide, and accurate detection and counting of wheat spikes are vital for yield estimation and breeding. However, these tasks are daunting in complex field environments. To tackle this, we introduce RIA-SpikeNet, a model designed to detect and count wheat spikes in such conditions. First, we introduce an Implicit Decoupling Detection Head to incorporate more implicit knowledge, enabling the model to better distinguish visually similar wheat spikes. Second, Asymmetric Loss is employed as the confidence loss function, enhancing the learning weights of positive and hard samples, thus improving performance in complex scenes. Lastly, the backbone network is modified through reparameterization and the use of larger convolutional kernels, expanding the effective receptive field and improving shape information extraction. These enhancements significantly improve the model's ability to detect and count wheat spikes accurately. RIA-SpikeNet outperforms the state-of-the-art YOLOv8 detection model, achieving a competitive 81.54% mAP and 90.29% R2. The model demonstrates superior performance in challenging scenarios, providing an effective tool for wheat spike yield estimation in field environments and valuable support for wheat production and breeding efforts.


Assuntos
Triticum , Triticum/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Algoritmos
2.
Front Plant Sci ; 13: 973985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570910

RESUMO

Frequent outbreaks of agricultural pests can reduce crop production severely and restrict agricultural production. Therefore, automatic monitoring and precise recognition of crop pests have a high practical value in the process of agricultural planting. In recent years, pest recognition and detection have been rapidly improved with the development of deep learning-based methods. Although certain progress has been made in the research on pest detection and identification technology based on deep learning, there are still many problems in the production application in a field environment. This work presents a pest detector for multi-category dense and tiny pests named the Pest-YOLO. First, the idea of focal loss is introduced into the loss function using weight distribution to improve the attention of hard samples. In this way, the problems of hard samples arose from the uneven distribution of pest populations in a dataset and low discrimination features of small pests are relieved. Next, a non-Intersection over Union bounding box selection and suppression algorithm, the confluence strategy, is used. The confluence strategy can eliminate the errors and omissions of pest detection caused by occlusion, adhesion and unlabeling among tiny dense pest individuals to the greatest extent. The proposed Pest-YOLO model is verified on a large-scale pest image dataset, the Pest24, which includes more than 20k images with over 190k pests labeled by agricultural experts and categorized into 24 classes. Experimental results show that the Pest-YOLO can obtain 69.59% for mAP and 77.71% for mRecall on the 24-class pest dataset, which is 5.32% and 28.12% higher than the benchmark model YOLOv4. Meanwhile, our proposed model is superior to other several state-of-the-art methods, including the SSD, RetinaNet, Faster RCNN, YOLOv3, YOLOv4, YOLOv5s, YOLOv5m, YOLOX, DETR, TOOD, YOLOv3-W, and AF-RCNN detectors. The code of the proposed algorithm is available at: https://github.com/chr-secrect/Pest-YOLO.

3.
Front Plant Sci ; 13: 821717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310650

RESUMO

The number of wheat spikes per unit area is one of the most important agronomic traits associated with wheat yield. However, quick and accurate detection for the counting of wheat spikes faces persistent challenges due to the complexity of wheat field conditions. This work has trained a RetinaNet (SpikeRetinaNet) based on several optimizations to detect and count wheat spikes efficiently. This RetinaNet consists of several improvements. First, a weighted bidirectional feature pyramid network (BiFPN) was introduced into the feature pyramid network (FPN) of RetinaNet, which could fuse multiscale features to recognize wheat spikes in different varieties and complicated environments. Then, to detect objects more efficiently, focal loss and attention modules were added. Finally, soft non-maximum suppression (Soft-NMS) was used to solve the occlusion problem. Based on these improvements, the new network detector was created and tested on the Global Wheat Head Detection (GWHD) dataset supplemented with wheat-wheatgrass spike detection (WSD) images. The WSD images were supplemented with new varieties of wheat, which makes the mixed dataset richer in species. The method of this study achieved 0.9262 for mAP50, which improved by 5.59, 49.06, 2.79, 1.35, and 7.26% compared to the state-of-the-art RetinaNet, single-shot multiBox detector (SSD), You Only Look Once version3 (Yolov3), You Only Look Once version4 (Yolov4), and faster region-based convolutional neural network (Faster-RCNN), respectively. In addition, the counting accuracy reached 0.9288, which was improved from other methods as well. Our implementation code and partial validation data are available at https://github.com/wujians122/The-Wheat-Spikes-Detecting-and-Counting.

4.
Rev Sci Instrum ; 85(3): 035104, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689617

RESUMO

In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA