Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202412299, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255246

RESUMO

The multi-substituted anilines are widely found in organic synthesis, medicinal chemistry and material science. The quest for robust and efficient methods to construct a diverse array of these compounds using readily accessible starting materials under simple reaction conditions is of utmost importance. Here, we report an unprecedented and efficient approach for the synthesis of 2,4-di and 2,4,6-trisubstituted anilines. With a simple molybdenum(VI) catalyst, a wide range of 2,4-di and 2,4,6-trisubstituted anilines were efficiently prepared in generally good to excellent yields from readily accessible ynones and allylic amines. The synthetic potential of this methodology was further underscored by its applications in several synthetic transformations, gram-scale reactions, and derivatization of bioactive molecules. Preliminary mechanistic studies suggested that this aniline formation might involve a cascade of aza-Michael addition, [1,6]-proton shift, cyclization, dehydration, 6π-electrocyclization, and aromatization. This novel strategy provided a robust, simple, and modular approach for the syntheses of various valuable di- or trisubstituted anilines, some of which were otherwise challenging to access.

2.
ACS Omega ; 9(31): 33692-33701, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39130559

RESUMO

Five groups of FeCo alloy samples with different atomic ratios of Fe/Co (3:7, 4:6, 5:5, 6:4, 7:3) were prepared using the condensation reflux method. The results indicate that varying the atomic ratios of Fe/Co has a significant impact on the microstructure, electromagnetic parameters, and microwave absorption properties of FeCo alloys. As the Fe atom content increases, the morphology of the FeCo alloys transitions from irregular flower-shaped to uniformly spherical and eventually to lamellar. The attenuation of electromagnetic waves in the five groups of alloys is primarily due to magnetic loss. Among them, Fe6Co4 exhibits the best absorption performance, with a minimum reflection loss (RL) value of -35.56 dB at a frequency of 10.40 GHz when the matching thickness is 7.90 mm. Additionally, at a matching thickness of 5.11 mm, the maximum effective absorption bandwidth (EAB) reached 2.56 GHz (15.44-18 GHz).

3.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080363

RESUMO

The conformational changes in switch domains significantly affect the activity of NRAS. Gaussian-accelerated molecular dynamics (GaMD) simulations of three separate replicas were performed to decipher the effects of G13D, Q16R, and C118S on the conformational transformation of the GDP-bound NRAS. The analyses of root-mean-square fluctuations and dynamics cross-correlation maps indicated that the structural flexibility and motion modes of the switch domains involved in the binding of NRAS to effectors are highly altered by the G13D, Q61R, and C118Smutations. The free energy landscapes (FELs) suggested that mutations induce more energetic states in NRAS than the GDP-bound WT NRAS and lead to high disorder in the switch domains. The FELs also indicated that the different numbers of sodium ions entering the GDP binding regions compensate for the changes in electrostatic environments caused by mutations, especially for G13D. The GDP-residue interactions revealed that the disorder in the switch domains was attributable to the unstable hydrogen bonds between GDP and two residues, V29 and D30. This work is expected to provide information on the energetic basis and dynamics of conformational changes in switch domains that can aid in deeply understanding the target roles of NRAS in anticancer treatment.


Assuntos
Simulação de Dinâmica Molecular , Entropia , Mutação , Eletricidade Estática
4.
Materials (Basel) ; 12(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540498

RESUMO

In harsh environments, the corrosion damage of steel structures and equipment is a serious threat to the operational safety of service. In this paper, a Zn-Al diffusion layer was fabricated on 45 steel by the Mechanical Energy Aided Diffusion Method (MEADM) at 450 °C. The microstructure and composition, the surface topography, and the electrochemical performance of the Zn-Al diffusion layer were analyzed before and after corrosion. The results show that the Zn-Al diffusion layer are composed of Al2O3 and Γ1 phase (Fe11Zn40) and δ1 phase (FeZn6.67, FeZn8.87, and FeZn10.98) Zn-Fe alloy. There is a transition zone with the thickness of about 5 µm at the interface between the Zn-Al diffusion layer and the substrate, and a carbon-rich layer exists in this zone. The full immersion test and electrochemical test show that the compact corrosion products produced by the initial corrosion of the Zn-Al diffusion layer will firmly bond to the Zn-Al diffusion layer surface and fill the crack, which plays a role in preventing corrosion of the corrosive medium and reducing the corrosion rate of the Zn-Al diffusion layer. The salt spray test reveals that the initial corrosion products of the Zn-Al diffusion layer are mainly ZnO and Zn5(OH)8Cl2H2O. New corrosion products such as ZnAl2O4, FeOCl appear at the middle corrosion stage. The corrosion product ZnAl2O4 disappears, and the corrosion products Zn(OH)2 and Al(OH)3 appear at the later corrosion stage.

5.
Phys Rev Lett ; 120(5): 050403, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481194

RESUMO

Here, we present the most general framework for n-particle Hardy's paradoxes, which include Hardy's original one and Cereceda's extension as special cases. Remarkably, for any n≥3, we demonstrate that there always exist generalized paradoxes (with the success probability as high as 1/2^{n-1}) that are stronger than the previous ones in showing the conflict of quantum mechanics with local realism. An experimental proposal to observe the stronger paradox is also presented for the case of three qubits. Furthermore, from these paradoxes we can construct the most general Hardy's inequalities, which enable us to detect Bell's nonlocality for more quantum states.

6.
Opt Express ; 26(1): 32-50, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29328292

RESUMO

Contextuality, the impossibility of assigning context-independent measurement outcomes, is a critical resource for quantum computation and communication. No-signaling between successive measurements is an essential requirement that should be accomplished in any test of quantum contextuality and that is difficult to achieve in practice. Here, we introduce an optimal quantum state-independent contextuality inequality in which the deviation from the classical bound is maximal. We then experimentally test it using single photons generated from a defect in a bulk silicon carbide, while satisfying the requirement of no-signaling within the experimental error. Our results shed new light on the study of quantum contextuality under no-signaling conditions.

7.
Sci Bull (Beijing) ; 63(24): 1611-1615, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36658852

RESUMO

Since the pillars of quantum theory were established, it was already noted that quantum physics may allow certain correlations defying any local realistic picture of nature, as first recognized by Einstein, Podolsky and Rosen. These quantum correlations, now termed quantum nonlocality and tested by violation of Bell's inequality that consists of statistical correlations fulfilling local realism, have found loophole-free experimental confirmation. A more striking way to demonstrate the conflict exists, and can be extended to the multipartite scenario. Here we report experimental confirmation of such a striking way, the multipartite generalized Hardy's paradoxes, in which no inequality is used and the conflict is stronger than that within just two parties. The paradoxes we consider here belong to a general framework [S.-H. Jiang et al., Phys. Rev. Lett. 120 (2018) 050403], including previously known multipartite extensions of Hardy's original paradox as special cases. The conflict shown here is stronger than in previous multipartite Hardy's paradox. Thus, the demonstration of Hardy-typed quantum nonlocality becomes sharper than ever.

8.
Sci Rep ; 6: 32075, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27562658

RESUMO

In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell's nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR's original scenario is "steering", i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox.

9.
Sci Rep ; 6: 30036, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27452275

RESUMO

We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing.

10.
Sci Rep ; 5: 13080, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26272658

RESUMO

Quatum nonlocality as a valuable resource is of vital importance in quantum information processing. The characterization of the resource has been extensively investigated mainly for pure states, while relatively less is know for mixed states. Here we prove the existence of the optimal GHZ paradox by using a novel and simple method to extract an optimal state that can saturate the tradeoff relation between quantum nonlocality and the state purity. In this paradox, the logical inequality which is formulated by the GHZ-typed event probabilities can be violated maximally by the optimal state for any fixed amount of purity (or mixedness). Moreover, the optimal state can be described as a standard GHZ state suffering flipped color noise. The maximal amount of noise that the optimal state can resist is 50%. We suggest our result to be a step toward deeper understanding of the role played by the AVN proof of quantum nonlocality as a useful physical resource.

11.
Sci Rep ; 5: 11637, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26109325

RESUMO

Quantum theory has the intriguing feature that is inconsistent with noncontextual hidden variable models, for which the outcome of a measurement does not depend on which other compatible measurements are being performed concurrently. While various proofs of such contextual behavior of quantum systems have been established, relatively little is known concerning the possibility to demonstrate this intriguing feature for indistinguishable particles. Here, we show in a simple and systematic manner that with projective measurements alone, it is possible to demonstrate quantum contextuality for such systems of arbitrary Hilbert space dimensions, including those corresponding to a qubit. Our demonstration is applicable to a single fermion as well as multiple fermions, and thus also a composite boson formed from an even number of fermions. In addition, our approach gives a clear demonstration of the intimate connection between complementarity and contextuality, two seemingly unrelated aspects of quantum theory.

12.
Sci Rep ; 5: 11624, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26108704

RESUMO

We demonstrate here that for a given mixed multi-qubit state if there are at least two observers for whom mutual Einstein-Podolsky-Rosen steering is possible, i.e. each observer is able to steer the other qubits into two different pure states by spontaneous collapses due to von Neumann type measurements on his/her qubit, then nonexistence of local realistic models is fully equivalent to quantum entanglement (this is not so without this condition). This result leads to an enhanced version of Gisin's theorem (originally: all pure entangled states violate local realism). Local realism is violated by all mixed states with the above steering property. The new class of states allows one e.g. to perform three party secret sharing with just pairs of entangled qubits, instead of three qubit entanglements (which are currently available with low fidelity). This significantly increases the feasibility of having high performance versions of such protocols. Finally, we discuss some possible applications.

13.
Sci Rep ; 4: 4291, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24598858

RESUMO

In comparison with entanglement and Bell nonlocality, Einstein-Podolsky-Rosen steering is a newly emerged research topic and in its incipient stage. Although Einstein-Podolsky-Rosen steering has been explored via violations of steering inequalities both theoretically and experimentally, the known inequalities in the literatures are far from well-developed. As a result, it is not yet possible to observe Einstein-Podolsky-Rosen steering for some steerable mixed states. Recently, a simple approach was presented to identify Einstein-Podolsky-Rosen steering based on all-versus-nothing argument, offering a strong condition to witness the steerability of a family of two-qubit (pure or mixed) entangled states. In this work, we show that the all-versus-nothing proof of Einstein-Podolsky-Rosen steering can be tested by measuring the projective probabilities. Through the bound of probabilities imposed by local-hidden-state model, the proposed test shows that steering can be detected by the all-versus-nothing argument experimentally even in the presence of imprecision and errors. Our test can be implemented in many physical systems and we discuss the possible realizations of our scheme with non-Abelian anyons and trapped ions.

14.
Sci Rep ; 3: 2492, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23966132

RESUMO

Bell's inequality is established based on local realism. The violation of Bell's inequality by quantum mechanics implies either locality or realism or both are untenable. Leggett's inequality is derived based on nonlocal realism. The violation of Leggett's inequality implies that quantum mechanics is neither local realistic nor nonlocal realistic. The incompatibility of nonlocal realism and quantum mechanics has been currently confirmed by photon experiments. In our work, we propose to test Leggett's inequality using the Aharonov-Casher effect. In our scheme, four entangled particles emitted from two sources manifest a two-qubit-typed correlation that may result in the violation of the Leggett inequality, while satisfying the no-signaling condition for spacelike separation. Our scheme is tolerant to some local inaccuracies due to the topological nature of the Aharonov-Casher phase. The experimental implementation of our scheme can be possibly realized by a calcium atomic polarization interferometer experiment.

15.
Sci Rep ; 3: 2143, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23828242

RESUMO

Einstein-Podolsky-Rosen steering is a form of quantum nonlocality intermediate between entanglement and Bell nonlocality. Although Schrödinger already mooted the idea in 1935, steering still defies a complete understanding. In analogy to "all-versus-nothing" proofs of Bell nonlocality, here we present a proof of steering without inequalities rendering the detection of correlations leading to a violation of steering inequalities unnecessary. We show that, given any two-qubit entangled state, the existence of certain projective measurement by Alice so that Bob's normalized conditional states can be regarded as two different pure states provides a criterion for Alice-to-Bob steerability. A steering inequality equivalent to the all-versus-nothing proof is also obtained. Our result clearly demonstrates that there exist many quantum states which do not violate any previously known steering inequality but are indeed steerable. Our method offers advantages over the existing methods for experimentally testing steerability, and sheds new light on the asymmetric steering problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA