Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomass Convers Biorefin ; : 1-15, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36785542

RESUMO

A deep eutectic solvent (choline chloride (ChCl)-urea) was chosen to extract flavonoids from Moringa oleifera leaves (FMOL), the condition of extraction was tailor-made, under the optimal extraction conditions (material-to-liquid ratio of 1:60 g/mL, extraction time of 80 min, extraction temperature of 80 °C), the highest extraction efficiency reached 63.2 ± 0.3 mg R/g DW, and nine flavonoids were identified. Then, the biological activities including antioxidant activities, antibacterial activities, and anti-tumor activities were systematically studied. FMOL was superior to positive drugs in terms of antioxidant activity. As to DPPH investigation, the IC50 of FMOL and Vc were 64.1 ± 0.7 and 176.1 ± 2.0 µg/mL; for the ABTS, the IC50 of FMOL and Vc were 9.5 ± 0.3 and 38.2 ± 1.2 µg/mL, the FRAP value of FMOL and Vc were 15.5 ± 0.6 and 10.2 ± 0.4 mg TE/g, and ORAC value of FMOL and Vc were 4687.2 ± 102.8 and 3881.6 ± 98.6 µmol TE/g. The bacteriostatic (MICs were ≤ 1.25 mg/mL) activities of FMOL were much better than propyl p-hydroxybenzoate. Meanwhile, FMOL had comparable inhibitory activity with genistein on tumor cells, IC50 was 307.8 µg/mL, and could effectively induce apoptosis in HCT116. Microcapsules were prepared with xylose-modified soybean protein isolate and gelatin as wall materials; after that, the intestinal release of modified FMOL microcapsules was 86 times of free FMOL. Therefore, this study confirmed that FMOL extracted with ChCl/urea has rich bioactive components, and microencapsulated FMOL has potential application in food industry. Supplementary Information: The online version contains supplementary material available at 10.1007/s13399-023-03877-8.

2.
Molecules ; 26(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922589

RESUMO

In vitro experiments have indicated prebiotic activity of isomaltulose, which stimulates the growth of probiotics and the production of short chain fatty acids (SCFAs). However, the absence of in vivo trials undermines these results. This study aims to investigate the effect of isomaltulose on composition and functionality of gut microbiota in rats. Twelve Sprague-Dawley rats were divided into two groups: the IsoMTL group was given free access to water containing 10% isomaltulose (w/w), and the control group was treated with normal water for five weeks. Moreover, 16S rRNA sequencing showed that ingestion of isomaltulose increased the abundances of beneficial microbiota, such as Faecalibacterium and Phascolarctobacterium, and decreased levels of pathogens, including Shuttleworthia. Bacterial functional prediction showed that isomaltulose affected gut microbial functionalities, including secondary bile acid biosynthesis. Targeted metabolomics demonstrated that isomaltulose supplementation enhanced cholic acid concentration, and reduced levels of lithocholic acid, deoxycholic acid, dehydrocholic acid, and hyodeoxycholic acid. Moreover, the concentrations of propionate and butyrate were elevated in the rats administered with isomaltulose. This work suggests that isomaltulose modulates gut microbiota and the production of SCFAs and secondary bile acids in rats, which provides a scientific basis on the use of isomaltulose as a prebiotic.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Isomaltose/análogos & derivados , Probióticos/farmacologia , Animais , Teste de Tolerância a Glucose , Isomaltose/farmacologia , Masculino , RNA Ribossômico 16S/metabolismo , Ratos , Ratos Sprague-Dawley
3.
N Biotechnol ; 59: 51-58, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32693027

RESUMO

D-glucaric acid (GA) has been identified as among promising biotechnological alternatives to oil-based chemicals. GA and its derivatives are widely used in food additives, dietary supplements, drugs, detergents, corrosion inhibitors and biodegradable materials. The increasing availability of a GA market is improving the cost-effectiveness and efficiency of various biosynthetic pathways. In this study, an engineered Escherichia coli strain GA10 was constructed by systematic metabolic engineering. This involved redirecting metabolic flux into the GA biosynthetic pathways, blocking the conversion pathways of d-glucuronic acid (GlcA) and GA into by-products, introducing an in situ NAD+ regeneration system and fine-tuning the activity of the key enzyme, myo-inositol oxygenase (Miox). Subsequently, the culture medium was optimized to achieve the best performance of the GA10 strain. GA was produced at 5.35 g/L (extracellular and intracellular), with a maximized yield of ∼0.46 mol/mol on d-glucose and glycerol, by batch fermentation. This work demonstrates efficient biosynthetic pathways of GA in E. coli by metabolic engineering and should accelerate the application of GA biosynthetic pathways in industrial processes.


Assuntos
Escherichia coli/metabolismo , Ácido Glucárico/metabolismo , Engenharia Metabólica , Vias Biossintéticas , Biotecnologia , Escherichia coli/enzimologia , Inositol Oxigenase/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-32154222

RESUMO

(R)-1-phenyl-1,2-ethanediol is an important synthon for the preparation of ß-adrenergic blocking agents. This study identified a (2R,3R)-butanediol dehydrogenase (KgBDH) from Kurthia gibsonii SC0312, which showed high enantioselectivity for production of (R)-1-phenyl-1,2-ethanediol by reduction of 2-hydroxyacetophenone. KgBDH was expressed in a recombinant engineered strain, purified, and characterized. It showed good catalytic activity at pH 6-8 and better stability in alkaline (pH 7.5-8) than an acidic environment (pH 6.0-7.0), providing approximately 73 and 88% of residual activity after 96 h at pH 7.5 and 8.0, respectively. The maximum catalytic activity was obtained at 45°C; nevertheless, poor thermal stability was observed at >30°C. Additionally, the examined metal ions did not activate the catalytic activity of KgBDH. A recombinant Escherichia coli strain coexpressing KgBDH and glucose dehydrogenase (GHD) was constructed and immobilized via entrapment with a mixture of activated carbon and calcium alginate via entrapment. The immobilized cells had 1.8-fold higher catalytic activity than that of cells immobilized by calcium alginate alone. The maximum catalytic activity of the immobilized cells was achieved at pH 7.5, and favorable pH stability was observed at pH 6.0-9.0. Moreover, the immobilized cells showed favorable thermal stability at 25-30°C and better operational stability than free cells, retaining approximately 55% of the initial catalytic activity after four cycles. Finally, 81% yields (195 mM product) and >99% enantiomeric excess (ee) of (R)-1-phenyl-1,2-ethanediol were produced within 12 h through a fed-batch strategy with the immobilized cells (25 mg/ml wet cells) at 35°C and 180 rpm, with a productivity of approximately 54 g/L per day.

5.
Int J Biol Macromol ; 141: 460-470, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31473318

RESUMO

Based on the concept of endophytic fungus, if endophytic fungus can produce the same or similar product as the host plant, which will get rid of the restrictions of farmland, seasonal and pest, the active product could be sustainably obtained. In this study, an endophytic fungus polysaccharide FP showing the similar structure with the host Dendrobium officinale polysaccharide (DOP) was sustainably and cost-effectively obtained under preferred reaction conditions with different C/N ratio. The FP with high yield up to 2.77 ±â€¯0.51 g/L showed same monosaccharide composition with DOP as well as some host-plant-associated polysaccharides in published literatures. The main chain of FP was composed by →3,6)-ß-L-Man-(1→, α-D-Glc-(1→, →4)-α-D-Glc-(1→, →3,6)-ß-D-Gal-(1→, and →6)-ß-D-Gal-(1→, while the side chain was α-D-Glc-(1→. Meanwhile, FP was confirmed as a safe polysaccharide with good antioxidant, antiglycation and immunomodulatory activities. Furthermore, TLR2 and TLR4 were confirmed as the membrane receptors of FP on RAW264.7 cells.


Assuntos
Dendrobium , Polissacarídeos Fúngicos , Receptor 2 Toll-Like/agonistas , Receptor 4 Toll-Like/agonistas , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/isolamento & purificação , Polissacarídeos Fúngicos/farmacologia , Camundongos , Células RAW 264.7 , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
ChemSusChem ; 12(10): 2278-2285, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30791217

RESUMO

Glucaric acid (GA) is a major value-added chemicals feedstock and additive, especially in the food, cosmetics, and pharmaceutical industries. The increasing demand for GA is driving the search for a more efficient and less costly production pathway. In this study, a new in vitro multi-enzyme cascade system was developed, which converts sucrose efficiently to GA in a single vessel. The in vitro system, which does not require adenosine triphosphate (ATP) or nicotinamide adenine dinucleotide (NAD+ ) supplementation, contains seven enzymes. All enzymes were chosen from the BRENDA and NCBI databases and were expressed efficiently in Escherichia coli BL21(DE3). All seven enzymes were combined in an in vitro cascade system, and the reaction conditions were optimized. Under the optimized conditions, the in vitro seven-enzyme cascade system converted 50 mm sucrose to 34.8 mm GA with high efficiency (75 % of the theoretical yield). This system represents an alternative pathway for more efficient and less costly production of GA, which could be adapted for the synthesis of other value-added chemicals.


Assuntos
Ácido Glucárico/metabolismo , Engenharia Metabólica/métodos , Sacarose/metabolismo , Biotransformação , Escherichia coli/enzimologia , Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA