Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(7): 1929-1941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366355

RESUMO

Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over- or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plant Arabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock-down of TaMKP1 by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused by Puccinia striiformis f. sp. tritici (Pst) and powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt), indicating that TaMKP1 negatively regulates disease resistance in wheat. Unexpectedly, while Tamkp1 mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild-type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK-mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiologia , Mutagênese , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Puccinia/fisiologia , Plantas Geneticamente Modificadas
3.
J Phys Chem B ; 127(31): 6896-6902, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37494414

RESUMO

Stimulated Raman scattering (SRS) spectromicroscopy is a powerful technique that enables label-free detection of chemical bonds with high specificity. However, the low Raman cross section due to typical far-electronic resonance excitation seriously restricts the sensitivity and undermines its application to bio-imaging. To address this bottleneck, the electronic preresonance (EPR) SRS technique has been developed to enhance the Raman signals by shifting the excitation frequency toward the molecular absorption. A fundamental weakness of the previous demonstration is the lack of dual-wavelength tunability, making EPR-SRS only applicable to a limited number of species in the proof-of-concept experiment. Here, we demonstrate the EPR-SRS spectromicroscopy using a multiple-plate continuum (MPC) light source able to examine a single vibration mode with independently adjustable pump and Stokes wavelengths. In our experiments, the C═C vibration mode of Alexa 635 is interrogated by continuously scanning the pump-to-absorption frequency detuning throughout the entire EPR region enabled by MPC. The results exhibit 150-fold SRS signal enhancement and good agreement with the Albrecht A-term preresonance model. Signal enhancement is also observed in EPR-SRS images of the whole Drosophila brain stained with Alexa 635. With the improved sensitivity and potential to implement hyperspectral measurement, we envision that MPC-EPR-SRS spectromicroscopy can bring the Raman techniques closer to a routine in bio-imaging.

4.
Angew Chem Int Ed Engl ; 62(16): e202300815, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36825300

RESUMO

The exploration of deactivation mechanisms for near-infrared(NIR)-emissive organic molecules has been a key issue in chemistry, materials science and molecular biology. In this study, based on transient absorption spectroscopy and transient grating photoluminescence spectroscopy, we demonstrate that the aggregated PtII complex 4H (efficient NIR emitter) exhibits collective out-of-plane motions with a frequency of 32 cm-1 (0.96 THz) in the excited states. Importantly, similar THz characteristics were also observed in analogous PtII complexes with prominent NIR emission efficiency. The conservation of THz motions enables excited-state deactivation to proceed along low-frequency vibrational coordinates, contributing to the suppression of nonradiative decay and remarkable NIR emission. These novel results highlight the significance of excited-state vibrations in nonradiative processes, which serve as a benchmark for improving device performance.

5.
Opt Express ; 30(21): 38975-38984, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258449

RESUMO

Stimulated Raman scattering (SRS) has attracted increasing attention in bio-imaging because of the ability toward background-free molecular-specific acquisitions without fluorescence labeling. Nevertheless, the corresponding sensitivity and specificity remain far behind those of fluorescence techniques. Here, we demonstrate SRS spectro-microscopy driven by a multiple-plate continuum (MPC), whose octave-spanning bandwidth (600-1300 nm) and high spectral energy density (∼1 nJ/cm-1) enable spectroscopic interrogation across the entire Raman active region (0-4000 cm-1), SRS imaging of a Drosophila brain, and electronic pre-resonance (EPR) detection of a fluorescent dye. We envision that utilizing MPC light source will substantially enhance the sensitivity and specificity of SRS by implementing EPR mode and spectral multiplexing via accessing three or more coherent wavelengths.


Assuntos
Microscopia , Análise Espectral Raman , Análise Espectral Raman/métodos , Microscopia/métodos , Corantes Fluorescentes , Microscopia Óptica não Linear , Vibração
6.
Plants (Basel) ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890471

RESUMO

Club wheat (Triticum aestivum ssp. compactum) with a distinctly compact spike morphology was conditioned by the dominant compactum (C) locus on chromosome 2D and resulted in a redistribution of spike yield components. The disclosure of the genetic basis of club wheat was a prerequisite for the development of widely adapted, agronomically competitive club wheat cultivars. In this study, we used a recombinant inbred line population derived from a cross between club wheat Hiller and modern cultivar Yangmai 158 to construct a genetic linkage map and identify quantitative trait loci associated with 15 morphological traits. The club allele acted in a semi-dominant manner and the C gene was mapped to 370.12-406.29 Mb physical region on the long arm of 2D. Apart from compact spikes, C exhibited a pleiotropic effect on ten other agronomic traits, including plant height, three spike-related traits and six grain-related traits. The compact spike phenotype was correlated with decreased grain size and weight, but with an increase in floret fertility and grain number. These pleiotropic effects make club wheat have compatible spike weight with a normal spike from common wheat. The genetic effects of various gene combinations of C with four yield-related genes, including Ppd-D1, Vrn-D3, Rht-B1b and Rht8, were evaluated. C had no epistatic interaction with any of these genes, indicating that their combinations would have an additive effect on other agronomically important traits. Our research provided a theoretical foundation for the potentially effective deployment of C gene into modern breeding varieties in combination with other favorable alleles.

7.
J Agric Food Chem ; 70(12): 3719-3729, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293725

RESUMO

Stripe rust is a widespread and harmful wheat disease caused by Puccinia striiformis f. sp. tritici (Pst) worldwide. Targeted metabolome and transcriptomics analyses of CYR23 infected leaves were performed to identify the differential metabolites and differentially expressed genes related to wheat disease resistance. We observed upregulation of 33 metabolites involved in the primary and secondary metabolism, especially for homogentisic acid (HGA), p-coumaroylagmatine, and saccharopine. These three metabolites were mainly involved in the phenylpropanoid metabolic pathway, hydroxycinnamic acid amides pathway, and saccharopine pathway. Combined with transcriptome data on non-compatible interaction, the synthesis-related genes of these three differential metabolites were all upregulated significantly. The gene regulatory network involved in response to Pst infection was constructed, which revealed that several transcription factor families including WRKYs, MYBs, and bZIPs were identified as potentially hubs in wheat resistance response against Pst. An in vitro test showed that HGA effectively inhibited the germination of stripe rust fungus urediniospores and reduced the occurrence of wheat stripe rust. The results of gene silencing and overexpression of HGA synthesis-related gene 4-hydroxyphenylpyruvate dioxygenase proved that HGA was involved in wheat disease resistance. These results provided a further understanding of the disease resistance of wheat and indicated that HGA can be developed as a potential agent against Pst.


Assuntos
Transcriptoma , Triticum , Ácido Homogentísico , Doenças das Plantas/microbiologia , Puccinia , Triticum/genética , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA