Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 69(12): 1991-2000, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38755089

RESUMO

Spartina alterniflora has rapidly and extensively encroached on China's coastline over the past decades. Among the coastal areas invaded by S. alterniflora, at most 93% are mudflats. However, the effect of S. alterniflora invasion on soil organic carbon (SOC) stocks of coastal mudflats has not been systematically studied on a national scale. Here, we quantified the nationwide changes in SOC stocks in coastal mudflats associated with S. alterniflora invasion between 1990 and 2020. We found that S. alterniflora invasion significantly enhanced SOC stocks in coastal China. Nonetheless, the benefit of S. alterniflora invasion of coastal SOC stock may be weakened by continuing human intervention. We found that S. alterniflora invading mudflats added 2.3 Tg SOC stocks to China's coastal blue carbon, while 1.78 Tg SOC stocks were lost mainly due to human activities, resulted in a net SOC stock gain of 0.52 Tg C. These findings overturned the traditionally thought that S. alterniflora invasion would reduce ecosystem services by highlighting that the historical invasion of S. alterniflora has broadly and consistently enhanced blue carbon stock in coastal China.


Assuntos
Sequestro de Carbono , Carbono , Ecossistema , Espécies Introduzidas , Poaceae , Solo , China , Solo/química , Carbono/análise , Humanos
2.
Environ Pollut ; 239: 670-680, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29709838

RESUMO

Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients, increasing metals and persistent organic pollutants (POPs), and climate change have led to severe ecological degradation in the coastal zone, while few studies have focused on the combined impacts of pollution and climate change on the coastal ecosystems at the global level. A global overview of nutrients, metals, POPs, and major environmental changes due to climate change and their impacts on coastal ecosystems was carried out in this study. Coasts of the Eastern Atlantic and Western Pacific were hotspots of concentrations of several pollutants, and mostly affected by warming climate. These hotspots shared the same features of large populations, heavy industry and (semi-) closed sea. Estimation of coastal ocean capital, integrated management of land-ocean interaction in the coastal zone, enhancement of integrated global observation system, and coastal ecosystem-based management can play effective roles in promoting sustainable management of coastal marine ecosystems. Enhanced management from the perspective of mitigating pollution and climate change was proposed.


Assuntos
Mudança Climática , Ecossistema , Poluição Ambiental , Conservação dos Recursos Naturais , Ecologia , Humanos
3.
Environ Sci Pollut Res Int ; 24(10): 8957-8966, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26330311

RESUMO

Rapid economic development and increasing population in China have exerted tremendous pressures on the coastal ecosystems. In addition to land-based pollutants and reclamation, fast expansion of large-scale intensive mariculture activities has also brought about additional effects. So far, the ecological impact of rapid mariculture development and its large-scale operations has not drawn enough attention. In this paper, the rapid development of mariculture in China is reviewed, China's effort in the application of ecological mariculture is examined, and the vulnerability of marine ecosystem to mariculture impact is evaluated through a number of examples. Removal or reduced large and forage fish, due to both habitat loss to reclamation/mariculture and overfishing for food or fishmeal, may have far-reaching effects on the coastal and shelf ecosystems in the long run. Large-scale intensive mariculture operations carry with them undesirable biological and biochemical characteristics, which may have consequences on natural ecosystems beyond normally perceived spatial and temporal boundaries. As our understanding of possible impacts of large-scale intensive mariculture is lagging far behind its development, much research is urgently needed.


Assuntos
Ecologia , Ecossistema , Animais , China , Meio Ambiente , Peixes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA