Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Natl Sci Rev ; 10(12): nwad227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38152479

RESUMO

N6-methyladenosine (m6A) is a critical regulator in the fate of RNA, but whether and how m6A executes its functions in different tissues remains largely obscure. Here we report downregulation of a crucial m6A reader, YTHDF2, leading to tissue-specific programmed cell deaths (PCDs) upon fluorene-9-bisphenol (BHPF) exposure. Currently, Bisphenol A (BPA) substitutes are widely used in plastic manufacturing. Interrogating eight common BPA substitutes, we detected BHPF in 14% serum samples of pregnant participants. In a zebrafish model, BHPF caused tissue-specific PCDs triggering cardiac and vascular defects. Mechanistically, BHPF-mediated downregulation of YTHDF2 reduced YTHDF2-facilitated translation of m6A-gch1 for cardiomyocyte ferroptosis, and decreased YTHDF2-mediated m6A-sting1 decay for caudal vein plexus (CVP) apoptosis. The two distinct YTHDF2-mediated m6A regulations and context-dependent co-expression patterns of gch1/ythdf2 and tnfrsf1a/ythdf2 contributed to YTHDF2-mediated tissue-specific PCDs, uncovering a new layer of PCD regulation. Since BHPF/YTHDF2-medaited PCD defects were also observed in mammals, BHPF exposure represents a potential health threat.

2.
Chemosphere ; 322: 138195, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36822516

RESUMO

Bisphenol A (BPA) was widely used in the plastic products and banned in infant food containers in many countries due to the environmental and biological toxicity. As a common substitute of BPA to manufacture products, Bisphenol C (BPC) is frequently detected in human samples like infants and toddlers' urine, indicating infants and young children are at risk of BPC exposure. However, the understanding of effects of BPC exposure on early development is limited. Herein, we evaluated the early developmental toxicity of BPC and studied the underlying mechanism in a zebrafish model. We found BPC exposure leading to liver and intestinal developmental defects in zebrafish, which occurred via disruption of GPER-AKT-mTOR-RPS6 pathway. Specifically, BPC downregulated phosphorylated and total levels of mTOR, which synergistically reduced the phosphorylation of RPS6, suppressing the translation of genes essential for cell proliferation in liver and intestine such as yap1 and tcf4. Collectively, our results not only observed clear toxicity of BPC during liver and intestinal development but also demonstrated the underlying mechanism of BPC-mediated defects via disrupting the GPER-AKT-mTOR-RPS6 pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Peixe-Zebra , Animais , Compostos Benzidrílicos/metabolismo , Fígado/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/metabolismo
3.
Cell Rep ; 41(4): 111546, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288717

RESUMO

Human papillomavirus (HPV)-induced carcinogenesis critically depends on the viral early protein 7 (E7), making E7 an attractive therapeutic target. Here, we report that the E7 messenger RNA (mRNA)-containing oncotranscript complex can be selectively targeted by heat treatment. In HPV-infected cells, viral E7 mRNA is modified by N6-methyladenosine (m6A) and stabilized by IGF2BP1, a cellular m6A reader. Heat treatment downregulates E7 mRNA and protein by destabilizing IGF2BP1 without the involvement of canonical heat-shock proteins and reverses HPV-associated carcinogenesis in vitro and in vivo. Mechanistically, heat treatment promotes IGF2BP1 aggregation only in the presence of m6A-modified E7 mRNA to form distinct heat-induced m6A E7 mRNA-IGF2BP1 granules, which are resolved by the ubiquitin-proteasome system. Collectively, our results not only show a mutual regulation between m6A RNA and its reader but also provide a heat-treatment-based therapeutic strategy for HPV-associated malignancies by specifically downregulating E7 mRNA-IGF2BP1 oncogenic complex.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Humanos , Alphapapillomavirus/metabolismo , Carcinogênese , Proteínas de Choque Térmico , Resposta ao Choque Térmico , Papillomaviridae , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Complexo de Endopeptidases do Proteassoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Ubiquitina , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA