Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Dev Cell ; 59(1): 108-124.e7, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38101413

RESUMO

Microglia are highly heterogeneous as resident immune cells in the central nervous system. Although the proinflammatory phenotype of microglia is driven by the metabolic transformation in the disease state, the mechanism of metabolic reprogramming in microglia and whether it affects surrounding astrocyte progenitors have not been well elucidated. Here, we illustrate the communication between microglial metabolism and astrogenesis during embryonic development. The transcription factor BTB and CNC homology 1 (Bach1) reduces lactate production by inhibiting two key enzymes, HK2 and GAPDH, during glycolysis. Metabolic perturbation of microglia reduces lactate-dependent histone modification enrichment at the Lrrc15 promoter. The microglia-derived LRRC15 interacts with CD248 to participate in the JAK/STAT pathway and influence astrogenesis. In addition, Bach1cKO-Cx3 mice exhibit abnormal neuronal differentiation and anxiety-like behaviors. Altogether, this work suggests that the maintenance of microglia metabolic homeostasis during early brain development is closely related to astrogenesis, providing insights into astrogenesis and related diseases.


Assuntos
Janus Quinases , Microglia , Animais , Feminino , Camundongos , Gravidez , Encéfalo/metabolismo , Janus Quinases/metabolismo , Lactatos/metabolismo , Microglia/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo
2.
Cell Death Differ ; 30(9): 2053-2065, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553426

RESUMO

Embryonic neurogenesis is tightly regulated by multiple factors to ensure the precise development of the cortex. Deficiency in neurogenesis may result in behavioral abnormalities. Pd1 is a well-known inhibitory immune molecule, but its function in brain development remains unknown. Here, we find brain specific deletion of Pd1 results in abnormal cortical neurogenesis, including enhanced proliferation of neural progenitors and reduced neuronal differentiation. In addition, neurons in Pd1 knockout mice exhibit abnormal morphology, both the total length and the number of primary dendrites were reduced. Moreover, Pd1cKO mice exhibit depressive-like behaviors, including immobility, despair, and anhedonia. Mechanistically, Pd1 regulates embryonic neurogenesis by targeting Pax3 through the ß-catenin signaling pathway. The constitutive expression of Pax3 partly rescues the deficiency of neurogenesis in the Pd1 deleted embryonic brain. Besides, the administration of ß-catenin inhibitor, XAV939, not only rescues abnormal brain development but also ameliorates depressive-like behaviors in Pd1cKO mice. Simultaneously, Pd1 plays a similar role in human neural progenitor cells (hNPCs) proliferation and differentiation. Taken together, our findings reveal the critical role and regulatory mechanism of Pd1 in embryonic neurogenesis and behavioral modulation, which could contribute to understanding immune molecules in brain development.


Assuntos
Neurônios , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Encéfalo/metabolismo , Camundongos Knockout , Neurogênese , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
3.
Mol Brain ; 16(1): 53, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344908

RESUMO

The regulation of neural stem cell (NSC) proliferation and differentiation during brain development is a precisely controlled process, with the production of different neuronal subtypes governed by strict timelines. Glutamate is predominantly used as a neurotransmitter by the subtypes of neurons in the various layers of the cerebral cortex. The expression pattern of BCAT1, a gene involved in glutamate metabolism, in the different layers of neurons has yet to be fully understood. Using single-cell data, we have identified seven different states of NSCs and found that state 4 is closely associated with the development of projection neurons. By inferring the developmental trajectory of different neuronal subtypes from NSC subsets of this state, we discovered that BCAT1 is involved in the regulation of NSC proliferation and differentiation and is specifically highly expressed in layer II/III and IV neurons. Suppression of BCAT1 through shRNA resulted in a reduction in NSC proliferation and an abnormal development of layer II/III and IV neurons. These findings provide new insights into the role of BCAT1 in the regulation of NSC behavior and neuronal development.


Assuntos
Células-Tronco Neurais , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Diferenciação Celular/genética , Ácido Glutâmico/metabolismo , Proliferação de Células
4.
Cell Prolif ; 56(5): e13447, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36916004

RESUMO

The vascular system and the neural system processes occur simultaneously, the interaction among them is fundamental to the normal development of the central nervous system. Arid1a (AT-rich interaction domain 1A), which encodes an epigenetic subunit of the SWI/SNF chromatin-remodelling complex, is associated with promoter-mediated gene regulation and histone modification. However, the molecular mechanism of the interaction between cerebrovascular and neural progenitor cells (NPCs) remains unclear. To generate Arid1acKO-Tie2 mice, Arid1afl/fl mice were hybridized with Tie2-Cre mice. The Angiogenesis, neurogenesis and gliogenesis were studied by immunofluorescence staining and Western blotting. RNA-seq, RT-PCR, Western blotting, CO-IP and rescue experiments were performed to dissect the molecular mechanisms of Arid1a regulates fate determination of NPCs. We found that the absence of Arid1a results in increased the density of blood vessels, delayed neurogenesis and decreased gliogenesis, even after birth. Mechanistically, the deletion of Arid1a in endothelial cells causes a significant increase in H3k27ac and the secretion of maternal protein 2 (MATN2). In addition, matn2 alters the AKT/SMAD4 signalling pathway through its interaction with the NPCs receptor EGFR, leading to the decrease of SMAD4. SMAD complex further mediates the expression of downstream targets, thereby promoting neurogenesis and inhibiting gliogenesis. This study suggests that endothelial Arid1a tightly controls fate determination of NPCs by regulating the AKT-SMAD signalling pathway.


Assuntos
Células Endoteliais , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Proteínas Nucleares/genética , Neurogênese , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Cell Discov ; 8(1): 124, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414636

RESUMO

Neocortex expansion and folding are related to human intelligence and cognition, but the molecular and cellular mechanisms underlying cortical folding remain poorly understood. Here, we report that the human gene SERPINA3 is linked to gyrification. Specifically, the overexpression of SERPINA3 induced neocortical folding, increased the abundance of neurons, and improved cognitive abilities. Further, SERPINA3 promoted proliferation of the outer radial glia (oRG, also referred to as the basal radial glia) and increased the number of upper-layer neurons. The downstream target Glo1 was determined to be involved in SERPINA3-induced gyrification. Moreover, SERPINA3 increased the proliferation of oRG by binding to the Glo1 promoter. Assessment of behavior performance showed enhanced cognitive abilities in SERPINA3 knock-in mice. Our findings will enrich the understanding of neocortical expansion and gyrification and provide insights into possible treatments for intellectual disability and lissencephaly syndrome.

6.
Cell Rep ; 40(11): 111350, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103829

RESUMO

The intimate communication between the vascular and nervous systems is critical for maintaining central nervous system (CNS) development. However, whether cerebrovascular endothelial cells (ECs) can orchestrate neural precursor cell (NPC) proliferation and differentiation, and the identity of the signals involved therein, is unclear. Here, we find that the development of ECs is often accompanied by DNA damage. RNF20, an E3 ubiquitin ligase, is required for the DNA damage response (DDR). The deletion of RNF20 causes the accumulation of DNA damage in ECs, which fails to secrete cartilage intermediate layer protein 2 (CILP2). Moreover, the loss of endothelium-derived CILP2 alters the downstream cascade signaling of Wnt signaling pathways through the interaction with Wnt3a, which disturbs the NPC fate and causes autism-like behaviors in mice. Therefore, the close and refined controlled neurovascular interactions ensure the normal operation of neurogenesis during embryonic development.


Assuntos
Células Endoteliais , Células-Tronco Neurais , Animais , Diferenciação Celular , Proliferação de Células , Desenvolvimento Embrionário , Células Endoteliais/metabolismo , Feminino , Camundongos , Células-Tronco Neurais/metabolismo , Gravidez , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Mol Psychiatry ; 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858990

RESUMO

Microglia are resident macrophages of the central nervous system that selectively emerge in embryonic cortical proliferative zones and regulate neurogenesis by altering molecular and phenotypic states. Despite their important roles in inflammatory phagocytosis and neurodegenerative diseases, microglial homeostasis during early brain development has not been fully elucidated. Here, we demonstrate a notable interplay between microglial homeostasis and neural progenitor cell signal transduction during embryonic neurogenesis. ARID1A, an epigenetic subunit of the SWI/SNF chromatin-remodeling complex, disrupts genome-wide H3K9me3 occupancy in microglia and changes the epigenetic chromatin landscape of regulatory elements that influence the switching of microglial states. Perturbation of microglial homeostasis impairs the release of PRG3, which regulates neural progenitor cell self-renewal and differentiation during embryonic development. Furthermore, the loss of microglia-driven PRG3 alters the downstream cascade of the Wnt/ß-catenin signaling pathway through its interaction with the neural progenitor receptor LRP6, which leads to misplaced regulation in neuronal development and causes autism-like behaviors at later stages. Thus, during early fetal brain development, microglia progress toward a more homeostatic competent phenotype, which might render neural progenitor cells respond to environmental cross-talk perturbations.

8.
Adv Sci (Weinh) ; 9(18): e2105208, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35488517

RESUMO

During mammalian cortical development, neural stem/progenitor cells (NSCs) gradually alter their characteristics, and the timing of generation of neurons and glial cells is strictly regulated by internal and external factors. However, whether the blood vessels located near NSCs affect the neurogenic-to-gliogenic transition remain unknown. Here, it is demonstrated that endothelial uncoupling protein 2 (UCP2) deletion reduces blood vessel diameter and affects the transition timing of neurogenesis and gliogenesis. Deletion of endothelial UCP2 results in a persistent increase in astrocyte production at the postnatal stage. Mechanistically, the endothelial UCP2/ROS/ERK1/2 pathway increases chymase-1 expression to enhance angiotensin II (AngII) secretion outside the brain endothelium. The endotheliocyte-driven AngII-gp130-JAK-STAT pathway also regulates gliogenesis initiation. Moreover, endothelial UCP2 knockdown decreases human neural precursor cell (hNPC) differentiation into neurons and accelerates hNPC differentiation into astrocytes. Altogether, this work provides mechanistic insights into how endothelial UCP2 regulates the neurogenic-to-gliogenic fate switch in the developing neocortex.


Assuntos
Neocórtex , Células-Tronco Neurais , Animais , Diferenciação Celular/fisiologia , Células Endoteliais/metabolismo , Humanos , Janus Quinases/metabolismo , Mamíferos/metabolismo , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
9.
EMBO Rep ; 23(3): e53602, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935271

RESUMO

Cortical expansion and folding are key processes in human brain development and evolution and are considered to be principal elements of intellectual ability. How cortical folding has evolved and is induced during embryo development is not well understood. Here, we show that the expression of human FOXM1 promotes basal progenitor cell proliferation and induces cortical thickening and folding in mice. Human-specific protein sequences further promote the generation of basal progenitor cells. Human FOXM1 increases the proliferation of neural progenitors by binding to the Lin28a promoter and increasing Lin28a expression. Furthermore, overexpression of LIN28A rescues the proliferation of human FOXM1 knockout neural progenitor cells. Together, our findings demonstrate that a human gene can increase the number of basal progenitor cells in mice, leading to brain size increase and gyrification, and may thus contribute to evolutionary brain development and cortical expansion.


Assuntos
Encéfalo/citologia , Proliferação de Células , Proteína Forkhead Box M1 , Células-Tronco Neurais , Animais , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/citologia , Proteínas de Ligação a RNA
10.
Eur J Pharmacol ; 912: 174577, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34688636

RESUMO

Short interspersed nuclear elements (SINEs) play a key role in regulating gene expression, and SINE RNAs are involved in age-related diseases. We investigated the anti-aging effects of a genetically engineered murine SINE B1 antisense RNA (B1as RNA) and explored its mechanism of action in naturally senescent BALB/c (≥14 months) and moderately senscent C57BL/6N (≥9 months) mice. After tail vein injection, B1as RNA was available in the blood of mice for approximately 30 min, persisted for approximately 2-4 h in most detected tissues and persisted approximately 48 h in lungs. We found that treatment with B1as RNA improved stamina and promoted hair re-growth in aged mice. Treatment with B1as RNA also partially rescued the increase in mitochondrial DNA copy number in liver and spleen tissues observed in aged and moderately senescent mice. Finally, treatment with B1as RNA increased the activities of superoxide dismutase and glutathione peroxidase in aged and moderately senescent mice, reduced these animals' malondialdehyde and reactive oxygen species levels, and modulated the expression of several aging-associated genes, including Sirtuin 1, p21, p16Ink4a, p15Ink4b and p19Arf, and anti-oxidant genes (Sesn1 and Sesn 2). These data suggest that B1as RNA inhibits the aging process by enhancing antioxidant activity, promoting the scavenging of free radicals, and modulating the expression of aging-associated genes. This is the first report describing the anti-aging activity of SINE antisense RNA, which may serve as an effective nucleic acid drug for the treatment of age-related diseases.


Assuntos
Envelhecimento/genética , Antioxidantes/farmacologia , RNA Antissenso/farmacologia , Elementos Nucleotídeos Curtos e Dispersos/genética , Envelhecimento/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Glutationa Peroxidase/metabolismo , Cabelo/efeitos dos fármacos , Injeções , Malondialdeído/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Resistência Física/efeitos dos fármacos , RNA/metabolismo , RNA Antissenso/administração & dosagem , Superóxido Dismutase/metabolismo , beta-Galactosidase/metabolismo
11.
EMBO Rep ; 22(7): e52150, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34046991

RESUMO

The development of the nervous system requires precise regulation. Any disturbance in the regulation process can lead to neurological developmental diseases, such as autism and schizophrenia. Histone variants are important components of epigenetic regulation. The function and mechanisms of the macroH2A (mH2A) histone variant during brain development are unknown. Here, we show that deletion of the mH2A isoform mH2A1.2 interferes with neural stem cell differentiation in mice. Deletion of mH2A1.2 affects neurodevelopment, enhances neural progenitor cell (NPC) proliferation, and reduces NPC differentiation in the developing mouse brain. mH2A1.2-deficient mice exhibit autism-like behaviors, such as deficits in social behavior and exploratory abilities. We identify NKX2.2 as an important downstream effector gene and show that NKX2.2 expression is reduced after mH2A1.2 deletion and that overexpression of NKX2.2 rescues neuronal abnormalities caused by mH2A1.2 loss. Our study reveals that mH2A1.2 reduces the proliferation of neural progenitors and enhances neuronal differentiation during embryonic neurogenesis and that these effects are at least in part mediated by NKX2.2. These findings provide a basis for studying the relationship between mH2A1.2 and neurological disorders.


Assuntos
Transtorno Autístico , Histonas , Animais , Transtorno Autístico/genética , Diferenciação Celular , Proliferação de Células/genética , Epigênese Genética , Histonas/deficiência , Histonas/metabolismo , Proteína Homeobox Nkx-2.2 , Camundongos , Sistema Nervoso/metabolismo , Neurogênese/genética
12.
MethodsX ; 7: 101102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194561

RESUMO

RNAs have been elucidated to play the critical role in regulating gene expression and to be expected as effective drugs in the treatment of cancer and age-related diseases. RNAs are extracted by SDS-NaCl centrifugation after transformation of E.coli by expression vectors, which is a method to obtain genetically engineered RNAs. But the prepared RNAs by this method contain endotoxin, which limits their application in vivo and in cell experments. Here we improved SDS-NaCl filtration method based on SDS-NaCl centrifugation method. Endotoxin removal efficiency of SDS-NaCl filtration was nearly 4.2 times more than did SDS-NaCl centrifugation. Triton X-114 phase separation was used to reduce futher the endotoxin content of SDS-NaCI filtration-extracted RNA (from 11.25 EU/µg RNA/ml to 0.08 EU/µg RNA/ml). RNA prepared using the methods established in this paper meets the requirements for in vivo and cell culture experiments. Here we describe the process of preparing endotoxin-free B1as RNA from pET-B1as-DE3 E. coli (DE3 transformed by pET-B1as expression vector which containing a tandem SINE B1 elements) using SDS-NaCl filtration incorporating Triton X-114 phase separation.•The endotoxin removal efficiency of SDS-NaCl filtration is higher than that of SDS-NaCl centrifugation.•RNA prepared by SDS-NaCl filtration incorporating Triton X-114 meets the requirements for in vivo experiments on animals.

13.
Trends Cell Biol ; 30(11): 869-880, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33011018

RESUMO

During embryonic brain development, neurogenesis requires the orchestration of gene expression to regulate neural stem cell (NSC) fate specification. Epigenetic regulation with specific emphasis on the modes of histone variants and histone post-translational modifications are involved in interactive gene regulation of central nervous system (CNS) development. Here, we provide a broad overview of the regulatory system of histone variants and histone modifications that have been linked to neurogenesis and diseases. We also review the crosstalk between different histone modifications and discuss how the 3D genome affects cell fate dynamics during brain development. Understanding the mechanisms of epigenetic regulation in neurogenesis has shifted the paradigm from single gene regulation to synergistic interactions to ensure healthy embryonic neurogenesis.


Assuntos
Histonas/metabolismo , Neurogênese , Processamento de Proteína Pós-Traducional , Animais , Epigênese Genética , Humanos , Neurogênese/genética
14.
EMBO Rep ; 21(8): e49239, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32510763

RESUMO

Recently, de novo mutations of transcription factor 20 (TCF20) were found in patients with autism by large-scale exome sequencing. However, how TCF20 modulates brain development and whether its dysfunction causes ASD remain unclear. Here, we show that TCF20 deficits impair neurogenesis in mouse. TCF20 deletion significantly reduces the number of neurons, which leads to abnormal brain functions. Furthermore, transcriptome analysis and ChIP-qPCR reveal that the DNA demethylation factor TDG is a downstream target gene of TCF20. As a nonspecific DNA demethylation factor, TDG potentially affects many genes. Combined TDG ChIP-seq and GO analysis of TCF20 RNA-Seq identifies T-cell factor 4 (TCF-4) as a common target. TDG controls the DNA methylation level in the promoter area of TCF-4, affecting TCF-4 expression and modulating neural differentiation. Overexpression of TDG or TCF-4 rescues the deficient neurogenesis of TCF20 knockdown brains. Together, our data reveal that TCF20 is essential for neurogenesis and we suggest that defects in neurogenesis caused by TCF20 loss are associated with ASD.


Assuntos
Transtorno Autístico , Animais , Transtorno Autístico/genética , Metilação de DNA , Humanos , Camundongos , Neurogênese/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
15.
Proc Natl Acad Sci U S A ; 117(17): 9413-9422, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32291340

RESUMO

Astrogenesis is repressed in the early embryonic period and occurs in the late embryonic period. A variety of external and internal signals contribute to the sequential differentiation of neural stem cells. Here, we discovered that immune-related CD93 plays a critical negative role in the regulation of astrogenesis in the mouse cerebral cortex. We show that CD93 expression is detected in neural stem cells and neurons but not in astrocytes and declines as differentiation proceeds. Cd93 knockout increases astrogenesis at the expense of neuron production during the late embryonic period. CD93 responds to the extracellular matrix protein Multimerin 2 (MMRN2) to trigger the repression of astrogenesis. Mechanistically, CD93 delivers signals to ß-Catenin through a series of phosphorylation cascades, and then ß-Catenin transduces these signals to the nucleus to activate Zfp503 transcription. The transcriptional repressor ZFP503 inhibits the transcription of glial fibrillary acidic protein (Gfap) by binding to the Gfap promoter with the assistance of Grg5. Furthermore, Cd93 knockout mice exhibit autism-like behaviors. Taken together, our results reveal that CD93 is a negative regulator of the onset of astrogenesis and provide insight into therapy for psychiatric disorders.


Assuntos
Astrócitos/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Transtorno Autístico , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Eletroporação , Proteínas da Matriz Extracelular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Proteínas do Tecido Nervoso/genética , Neurogênese , Neuroglia , Gravidez
16.
Cell Death Differ ; 27(8): 2313-2329, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32015502

RESUMO

Angiogenesis plays crucial roles in maintaining the complex operation of central nervous system (CNS) development. The architecture of communication between neurogenesis and angiogenesis is essential to maintain normal brain development and function. Hence, any disruption of neuron-vascular communications may lead to the pathophysiology of cerebrovascular diseases and blood-brain barrier (BBB) dysfunction. Here we demonstrate that neural differentiation and communication are required for vascular development. Regarding the cellular and molecular mechanism, our results show that PRDM16 activity determines the production of mature neurons and their specific positions in the neocortex. In the cortical plate (CP), aberrant neurons fail to secrete modular calcium-binding protein 1 (SMOC1), an important neuronal signal that participates in neurovascular communication to regulate CNS angiogenesis. Neuronal SMOC1 interacts with TGFBR1 by activating the transcription factors phospho-Smad2/3 to convey intercellular signals to endothelial cells (ECs) in the TGF-ß-Smad signaling pathway. Together, our results highlight a crucial coordinated neurovascular development process orchestrated by PRDM16 and reveal the importance of intimate communication for building the neurovascular network during brain development.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Neovascularização Fisiológica , Neurônios/citologia , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Ontologia Genética , Células HEK293 , Humanos , Camundongos Endogâmicos ICR , Camundongos Knockout , Neocórtex/embriologia , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/metabolismo , Osteonectina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
17.
Chaos ; 30(1): 013126, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32013481

RESUMO

Networks of coupled systems may exhibit a form of incomplete synchronization called partial synchronization or cluster synchronization, which refers to the situation where only some, but not all, systems exhibit synchronous behavior. Moreover, due to perturbations or uncertainties in the network, exact partial synchronization in the sense that the states of the systems within each cluster become identical, cannot be achieved. Instead, an approximate synchronization may be observed, where the states of the systems within each cluster converge up to some bound, and this bound tends to zero if (the size of) the perturbations tends to zero. In order to derive sufficient conditions for this robustified notion of synchronization, which we refer to as practical partial synchronization, first, we separate the synchronization error dynamics from the network dynamics and interpret them in terms of a nonautonomous system of delay differential equations with a bounded additive perturbation. Second, by assessing the practical stability of this error system, conditions for practical partial synchronization are derived and formulated in terms of linear matrix inequalities. In addition, an explicit relation between the size of perturbation and the bound of the synchronization error is provided.

18.
Onco Targets Ther ; 12: 7823-7831, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31576140

RESUMO

BACKGROUND: Hepatocellular carcinoma is a common malignant cancer and the second most common cause of cancer-related deaths worldwide. Collagen triple helix repeat containing 1 (CTHRC1) has been increasingly reported to be involved in tumorigenesis and/or tumor progression. However, limited data are available regarding the role of CTHRC1 in hepatocellular carcinoma. METHODS: Paraffin-embedded specimens from a total of 29 patients with HCC were collected in our study. The expression of CTHRC1 in hepatocellular carcinoma was evaluated using immunohistochemistry and bioinformatics analysis. Furthermore, Spearman analysis was performed to identify factors of correlation between CTHRC1 and clinicopathological features. Survival curves for hepatocellular carcinoma were produced using the Kaplan-Meier method and the log rank test. RESULTS: In this study, we confirmed that CTHRC1 is highly expressed in tissues and hepatoma cell lines. The statistical analysis revealed that the levels of CTHRC1 were significantly correlated with cirrhosis (P=0.024), tumor size (P=0.006), vascular invasion (P<0.001), TNM stage (P<0.001), and BCLC stage (P<0.001). High expression of CTHRC1 in hepatocellular carcinoma tissues is significantly associated with poor survival. CONCLUSION: CTHRC1 may serve as a prognostic biomarker for hepatocellular carcinoma.

19.
J Cell Biol ; 217(10): 3464-3479, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30037926

RESUMO

In mammals, a constant body temperature is an important basis for maintaining life activities. Here, we show that when pregnant mice are subjected to cold stress, the expression of RBM3, a cold-induced protein, is increased in the embryonic brain. When RBM3 is knocked down or knocked out in cold stress, embryonic brain development is more seriously affected, exhibiting abnormal neuronal differentiation. By detecting the change in mRNA expression during maternal cold stress, we demonstrate that Yap and its downstream molecules are altered at the RNA level. By analyzing RNA-binding motif of RBM3, we find that there are seven binding sites in 3'UTR region of Yap1 mRNA. Mechanistically, RBM3 binds to Yap1-3'UTR, regulates its stability, and affects the expression of YAP1. RBM3 and YAP1 overexpression can partially rescue the brain development defect caused by RBM3 knockout in cold stress. Collectively, our data demonstrate that cold temperature affects brain development, and RBM3 acts as a key protective regulator in cold stress.


Assuntos
Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Encéfalo/embriologia , Resposta ao Choque Frio , Embrião de Mamíferos/embriologia , Neurogênese , Fosfoproteínas/biossíntese , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Motivos de Nucleotídeos , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Sinalização YAP
20.
Nucleic Acids Res ; 46(17): 8817-8831, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29982651

RESUMO

Astrocytes play crucial roles in the central nervous system, and defects in astrocyte function are closely related to many neurological disorders. Studying the mechanism of gliogenesis has important implications for understanding and treating brain diseases. Epigenetic regulations have essential roles during mammalian brain development. Here, we demonstrate that histone H2A.Z.1 is necessary for the specification of multiple neural precursor cells (NPCs) and has specialized functions that regulate gliogenesis. Depletion of H2A.Z.1 suppresses gliogenesis and results in reduced astrocyte differentiation. Additionally, H2A.Z.1 regulates the acetylation of H3K56 (H3K56ac) by cooperating with the chaperone of ASF1a. Furthermore, RNA-seq data indicate that folate receptor 1 (FOLR1) participates in gliogenesis through the JAK-STAT signaling pathway. Taken together, our results demonstrate that H2A.Z.1 is a key regulator of gliogenesis because it interacts with ASF1a to regulate H3K56ac and then directly affects the expression of FOLR1, which acts as a signal-transducing component of the JAK-STAT signaling pathway.


Assuntos
Receptor 1 de Folato/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Neurogênese/genética , Neuroglia/fisiologia , Acetilação , Animais , Astrócitos/fisiologia , Proteínas de Ciclo Celular , Células Cultivadas , Proteínas Cromossômicas não Histona/metabolismo , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Histonas/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Chaperonas Moleculares , Células-Tronco Neurais , Gravidez , Transdução de Sinais/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA