Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 281: 116575, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917591

RESUMO

Brassinosteroids (BRs) can regulate various processes in plant development and defense against environmental stress. In this study, the contribution of BRs in the degradation of isoproturon (IPU) in rice has been established. IPU has a significant effect on rice growth, chlorophyll content, and membrane permeability. When treated with 1.0 µmol/L 24-epibrassinolide (EBR), a BR analogue, the associated symptoms of rice poisoning were alleviated as the IPU levels in the rice and growth media were decreased. In the presence of EBR, the activities of several IPU-related detoxification enzymes were enhanced to cope with the stress due to IPU. An RNA-sequencing (RNA-Seq) has been performed to determine the variation of transcriptomes and metabolic mechanisms in rice treated with EBR, IPU, or IPU+EBR. Some of the differentially expressed genes (DEGs) were Phase I-III reaction components of plants, such as cytochrome P450 (CYP450), glutathione S-transferase (GST), glycosyltransferases (GTs), and the ATP-binding cassette transporter (ABC transporter). The expression of some signal transduction genes was significantly up-regulated. The relative content of low-toxicity IPU metabolites increased due to the presence of EBR as determined by UPLC/Q-TOF-MS/MS. The IPU metabolic pathways include enzyme-catalyzed demethylation, hydroxylation, hydrolysis, glycosylation, and amino acid conjugation processes. The results suggest that EBR plays a key role in the degradation and detoxification of IPU. This study has provided evidence that BRs regulate the metabolism and detoxification of IPU in rice, and offers a new approach to ensuring cleaner crops by eliminating pesticide residues in the environment.

2.
J Hazard Mater ; 473: 134625, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759408

RESUMO

Development of a biotechnological system for rapid degradation of pesticides is important to mitigate the environmental, food security, and health risks that they pose. Degradation of atrazine (ATZ) and isoproturon (IPU) in rice crops promoted by the brassinosteroid (BR) signaling component BRASSINAZOLE RESISTANT4 (OsBZR4) is explored. OsBZR4 is localized in the plasma membrane and nucleus, and is strongly induced by ATZ and IPU exposure. Transgenic rice OsBZR4-overexpression (OE) significantly enhances resistance to ATZ and IPU toxicity, improving growth, and reducing ATZ and IPU accumulation (particularly in grains) in rice crops. Genetic destruction of OsBZR4 (CRISPR/Cas9) increases rice sensitivity and leads to increased accumulation of ATZ and IPU. OE plants promote phase I, II, and III metabolic reactions, and expression of corresponding pesticide degradation genes under ATZ and IPU stress. UPLC-Q-TOF-MS/MS analysis reveals increased relative contents of ATZ and IPU metabolites and conjugates in OE plants, suggesting an increased OsBZR4 expression and consequent detoxification of ATZ and IPU in rice and the environment. The role of OsBZR4 in pesticide degradation is revealed, and its potential application in enhancing plant resistance to pesticides, and facilitating the breakdown of pesticides in rice and the environment, is discussed.


Assuntos
Atrazina , Brassinosteroides , Oryza , Compostos de Fenilureia , Plantas Geneticamente Modificadas , Oryza/metabolismo , Oryza/genética , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/metabolismo , Brassinosteroides/metabolismo , Atrazina/toxicidade , Atrazina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Herbicidas/metabolismo , Herbicidas/toxicidade , Biodegradação Ambiental , Transdução de Sinais/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
3.
J Econ Entomol ; 116(4): 1329-1341, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37253084

RESUMO

Fall armyworm, Spodoptera frugiperda (J. E. Smith), has become an important agricultural pest worldwide. S. frugiperda is mainly controlled by the chemical insecticides, whereas the frequent application of insecticides would result in the resistance development. Insect uridine diphosphate-glucuronosyltransferases (UGTs), as phase II metabolism enzymes, play vital roles in the breakdown of endobiotic and xenobiotics. In this study, 42 UGT genes were identified by RNA-seq, including 29 UGT genes were elevated compared to the susceptible population, and the transcript levels of 3 UGTs (UGT40F20, UGT40R18, and UGT40D17) were increased by more than 2.0-fold in the field populations. Expression pattern analysis revealed that S. frugiperda UGT40F20, UGT40R18, and UGT40D17 were increased by 6.34-, 4.26-, and 8.28-fold, compared the susceptible populations, respectively. The expression of UGT40D17, UGT40F20, and UGT40R18 was affected after exposure to phenobarbital, chlorpyrifos, chlorfenapyr, sulfinpyrazone, and 5-nitrouracil. The induced expression of UGT genes may have improved UGT enzymatic activity, while the inhibition of UGTs genes expression may decreased UGT enzymatic activity. Sulfinpyrazone, and 5-nitrouracil, significantly increased the toxicity of chlorpyrifos and chlorfenapyr, as well as phenobarbital significantly reduced the toxicity of chlorpyrifos and chlorfenapyr against the susceptible populations and field populations of S. frugiperda. The suppression of UGTs (UGT40D17, UGT40F20, and UGT40R18) significantly increased the insensitivity of the field populations to chlorpyrifos and chlorfenapyr. These findings strongly supported our viewpoint that UGTs may play a critical role in insecticide detoxification. This study provides a scientific basis for the management of S. frugiperda.


Assuntos
Clorpirifos , Inseticidas , Mariposas , Animais , Spodoptera/genética , Inseticidas/farmacologia , Clorpirifos/farmacologia , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Sulfimpirazona , Resistência a Inseticidas/genética , Mariposas/genética , Mariposas/metabolismo , Larva
4.
Gene ; 866: 147333, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-36871671

RESUMO

The long-term use of isoproturon may threaten food security and human health. Cytochrome P450 (CYP or P450) can catalyze the biosynthetic metabolism, and play a crucial role in the modification of plant secondary metabolites. Therefore, it is of great importance to explore the genetic resources for isoproturon degradation. This research focused on a phase I metabolism gene (OsCYP1) with significant differential expression in rice under isoproturon pressure. Specifically, the high-throughput sequencing results of rice seedling transcriptome in response to isoproturon stress were analyzed. The molecular information and tobacco subcellular localization of OsCYP1 were studied. The subcellular localization of OsCYP1 in tobacco was assessed, where it is located in the endoplasmic reticulum. To analyze the expression of OsCYP1 in rice, the wild-type rice was treated with 0-1 mg/L isoproturon for 2 and 6 days, and qRT-PCR assays were conducted to detect the transcription levels. Compared with the control group, the expression of OsCYP1 in shoots was progressively upregulated after exposure to isoproturon, with 6.2-12.7-fold and 2.8-7.9-fold increases in transcription levels, respectively. Moreover, treatment with isoproturon upregulated the expression of OsCYP1 in roots, but the upregulation of transcripts was not significant except for 0.5 and 1 mg/L isoproturon at day 2. To confirm the role of OsCYP1 in enhancing isoproturon degradation, the vectors overexpressing OsCYP1 were transformed into recombinant yeast cells. After exposure to isoproturon, the growth of OsCYP1-transformed cells was better than the control cells, especially at higher stress levels. Furthermore, the dissipation rates of isoproturon were increased by 2.1-, 2.1- and 1.9-fold at 24, 48 and 72 h, respectively. These results further verified that OsCYP1 could enhance the degradation and detoxification of isoproturon. Collectively, our findings imply that OsCYP1 plays vital role in isoproturon degradation. This study provides a fundamental basis for the detoxification and regulatory mechanisms of OsCYP1 in crops via enhancing the degradation and/or metabolism of herbicide residues.


Assuntos
Herbicidas , Oryza , Humanos , Oryza/genética , Oryza/metabolismo , Herbicidas/farmacologia , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/análise , Compostos de Fenilureia/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA