Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Anal Chim Acta ; 1296: 342334, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401941

RESUMO

Accurate cellular-recognition based disease therapy is of significance for precision medicine. However, except of specific antibody-coupling strategy, very few probes have been reported to efficiently discriminate normal cells and lesion cells through cellular microenvironment. Herein, we proposed a glucose selectively-lightened upconversion nanoprobe to recognize cancer cells from a pile of normal cells based on Warburg effect, that indicated a heightened demand for glucose intake for cancer cells. The nanoprobes were constructed by mesoporous silica-coated upconversion nanoparticles (UCNP@mSiO2) with the crucial incorporation of a glucose-responsive modality, benzoboric acid (BA)-modified fluorescein molecules (FITC-BA). In cancer cells, the presence of elevated glucose concentrations triggered the transformation of FITC-BA to FITC-Glucose to recover nanoprobes' luminescence, however, the nanoprobes exhibited a shielded luminescent effect in healthy cells. To validate the hypothesis of accurate cellular-discrimination, a photodynamic therapy modality, riboflavin, with a specific ratio were also loaded into above UCNP@mSiO2 nanoprobes for effective production of reactive oxygen species to kill cells. It was found that 97.8% of cancer cells were cleaned up, but normal cells retained a nearly 100% viability after 10 min laser illumination. By leveraging the metabolic disparity from Warburg effect, the nanoprobes offer a highly accurate cellular discrimination, and significantly mitigate "off-target" damage commonly associated with conventional therapies.


Assuntos
Nanopartículas , Fluoresceína-5-Isotiocianato , Luz , Linhagem Celular Tumoral , Luminescência
2.
Exp Brain Res ; 242(2): 477-490, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184806

RESUMO

Several volatile anesthetics have presented neuroprotective functions in ischemic injury. This study investigates the effect of desflurane (Des) on neurons following oxygen-glucose deprivation (OGD) challenge and explores the underpinning mechanism. Mouse neurons HT22 were subjected to OGD, which significantly reduced cell viability, increased lactate dehydrogenase release, and promoted cell apoptosis. In addition, the OGD condition increased oxidative stress in HT22 cells, as manifested by increased ROS and MDA contents, decreased SOD activity and GSH/GSSG ratio, and reduced nuclear protein level of Nrf2. Notably, the oxidative stress and neuronal apoptosis were substantially blocked by Des treatment. Bioinformatics suggested potassium voltage-gated channel subfamily A member 1 (Kcna1) as a target of Des. Indeed, the Kcna1 expression in HT22 cells was decreased by OGD but restored by Des treatment. Artificial knockdown of Kcna1 negated the neuroprotective effects of Des. By upregulating Kcna1, Des activated the Kv1.1 channel, therefore enhancing K+ currents and inducing neuronal repolarization. Pharmacological inhibition of the Kv1.1 channel reversed the protective effects of Des against OGD-induced injury. Collectively, this study demonstrates that Des improves electrical activity of neurons and alleviates OGD-induced neuronal injury by activating the Kcna1-dependent Kv1.1 channel.


Assuntos
Oxigênio , Traumatismo por Reperfusão , Camundongos , Animais , Glucose/metabolismo , Desflurano/farmacologia , Transdução de Sinais , Estresse Oxidativo , Neurônios/metabolismo , Apoptose , Canal de Potássio Kv1.1/metabolismo
3.
BMC Microbiol ; 23(1): 389, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057705

RESUMO

BACKGROUND: Depression and anxiety are common comorbid diseases of constipation. Fecal microbiota transplantation (FMT) significantly relieves gastrointestinal-related symptoms, but its impact on psychiatric symptoms remains uncharted. METHODS: We collected fecal and serum samples before and after FMT from 4 functional constipation patients with psychiatric symptoms and corresponding donor stool samples. We categorized the samples into two groups: before FMT (Fb) and after FMT (Fa). Parameters associated with constipation, depression, and anxiety symptoms were evaluated. Metagenomics and targeted neurotransmitter metabolomics were performed to investigate the gut microbiota and metabolites. 5-hydroxytryptamine (5-HT) biosynthesis was detected in patients' fecal supernatants exposed to the QGP-1 cell model in vitro. RESULTS: Our study demonstrated that patient's constipation, depression, and anxiety were improved after FMT intervention. At the genus level, relative abundance of g_Bacteroides and g_Klebsiella decreased in the Fa group, while g_Lactobacillus, and g_Selenomonas content increased in the same group. These observations suggest a potential involvement of these genera in the pathogenesis of constipation with psychiatric symptoms. Metabolomics analysis showed that FMT intervention decreased serum 5-HT levels. Additionally, we found that species, including s_Klebsiella sp. 1_1_55, s_Odoribacter splanchnicus, and s_Ruminococcus gnavus CAG:126, were positively correlated with 5-HT levels. In contrast, s_Acetobacterium bakii, s_Enterococcus hermanniensis, s_Prevotella falsenii, s_Propionispira arboris, s_Schwartzia succinivorans, s_Selenomonas artemidis, and s_Selenomonas sp. FC4001 were negatively correlated with 5-HT levels. Furthermore, we observed that patients' fecal supernatants increased 5-HT biosynthesis in QGP-1 cells. CONCLUSION: FMT can relieve patients' constipation, depression, and anxiety symptoms by reshaping gut microbiota. The 5-HT level was associated with an altered abundance of specific bacteria or metabolites. This study provides specific evidence for FMT intervention in constipation patients with psychiatric symptoms.


Assuntos
Transplante de Microbiota Fecal , Gastroenteropatias , Humanos , Depressão/terapia , Multiômica , Serotonina , Constipação Intestinal/terapia , Fezes/microbiologia , Ansiedade/terapia
4.
Korean J Pain ; 36(1): 60-71, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536517

RESUMO

Background: The purpose of this research was to assess the role of heparanase (HPSE)/syndecan1 (SDC1)/nerve growth factor (NGF) on cancer pain from melanoma. Methods: The influence of HPSE on the biological function of melanoma cells and cancer pain in a mouse model was evaluated. Immunohistochemical staining was used to analyze HPSE and SDC1. HPSE, NGF, and SDC1 were detected using western blot. Inflammatory factors were detected using ELISA assay. Results: HPSE promoted melanoma cell viability, proliferation, migration, invasion, and tumor growth, as well as cancer pain, while SST0001 treatment reversed the promoting effect of HPSE. HPSE up-regulated NGF, and NGF feedback promoted HPSE. High expression of NGF reversed the inhibitory effect of HPSE down-regulation on melanoma cell phenotype deterioration, including cell viability, proliferation, migration, and invasion. SST0001 down-regulated SDC1 expression. SDC1 reversed the inhibitory effect of SST0001 on cancer pain. Conclusions: The results showed that HPSE promoted melanoma development and cancer pain by interacting with NGF/SDC1. It provides new insights to better understand the role of HPSE in melanoma and also provides a new direction for cancer pain treatment.

5.
Front Microbiol ; 13: 1018008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246281

RESUMO

Functional constipation is a common functional gastrointestinal disease. In our previous study, we found that the gut microbiota structure was disordered and the level of phenylalanine (Phe) in serum was decreased in constipated women. We conducted the present study to elucidate the role of Phe in remodeling the composition of gut microbiota and the relationship between gut microbiota and serum metabolites. Here, we demonstrated that Phe treatment significantly enhanced intestinal motility, suppressed inflammatory responses, and prevented intestinal barrier damage in rats with loperamide (Lop)-induced constipation. By metagenomic sequencing, the disbalanced gut microbial profile was analyzed in constipated rats. Phe treatment reversed changes in the abundance of several gut bacteria at the phylum, genus, and species levels. Further, we observed distinct metabolic patterns in constipated rats through targeted metabolomics and identified constipation-related gut microbial species linked to changes in circulating neurotransmitter metabolites. The abundances of species s_Lactobacillus murinus, s_Enterococcus italicus, s_Lactobacillus animalis, s_Lactobacillus apodemi, s_Enterococcus faecalis, and s_Lactobacillus backii were positively correlated with L-asparagine, L-Glutamic acid, Putrescine, and Spermidine levels. The abundances of s_Lactobacillus johnsonii and s_Butyricimonas virosa were negatively correlated with L-asparagine, L-Glutamic acid, Putrescine, and Spermidine levels. Taken together, our findings suggest that Phe can ameliorate the development of Lop-induced constipation in rats by remodeling the gut microbial community structure and changing metabolite levels.

6.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36077543

RESUMO

Inter-species somatic cell nuclear transfer (iSCNT) is significant in the study of biological problems such as embryonic genome activation and the mitochondrial function of embryos. Here, we used iSCNT as a model to determine whether abnormal embryo genome activation was caused by mitochondrial dysfunction. First, we found the ovine-bovine iSCNT embryos were developmentally blocked at the 8-cell stage. The reactive oxygen species level, mitochondrial membrane potential, and ATP level in ovine-bovine cloned embryos were significantly different from both bovine-bovine and IVF 8-cell stage embryos. RNA sequencing and q-PCR analysis revealed that mitochondrial transport, mitochondrial translational initiation, mitochondrial large ribosomal subunit, and mitochondrial outer membrane genes were abnormally expressed in the ovine-bovine embryos, and the mitochondrial outer membrane and mitochondrial ribosome large subunit genes, mitochondrial fusion gene 1, and ATPase Na+/K+ transporting subunit beta 3 gene were expressed at lower levels in the ovine-bovine cloned embryos. Furthermore, we found that overexpression and knockdown of Mfn1 significantly affected mitochondrial fusion and subsequent biological functions such as production of ATP, mitochondrial membrane potential, reactive oxygen species and gene expressions in cloned embryos. These findings enhance our understanding of the mechanism by which the Mfn1 gene regulates embryonic development and embryonic genome activation events.


Assuntos
Núcleo Celular , Embrião de Mamíferos , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Núcleo Celular/metabolismo , Clonagem de Organismos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Mitocôndrias/metabolismo , Técnicas de Transferência Nuclear , Oócitos/metabolismo , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Ovinos/genética
7.
BMC Vet Res ; 18(1): 290, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883090

RESUMO

BACKGROUND: The establishment of non-invasive diagnostic method for multiple ovulation prediction is helpful to improve the efficiency of multiple ovulation. The blood hormones and metabolites would be suitable indexes for this subject. METHODS: In this study, 86 estrus ewes (65 of induced estrus (IE) and 21 of spontaneous estrus (SE)) were selected and the blood samples were collected at the day before follicle-stimulating hormone (FSH) injection (1st) and before artificial insemination (2nd). The serum reproductive hormones ofFSH, luteinizing hormone (LH), 17ß-Estradiol (E2), progesterone (P4) and anti-Mullerian hormone (AMH) were measured through enzyme linked immunosorbent assay (ELISA) and the untargeted metabolomics analysis was processed through LC-MS/MS. The embryos were collected after 6.5 days of artificial insemination. RESULTS: In total, 975 and 406 embryos were collected in IE and SE group, respectively. The analysis of reproductive hormones showed that concentrations of FSH, E2 and AMH were positive correlated with the embryo yield while concentrations of LH and P4 were negative correlated in both group at 1st detection. At 2nd detection, the trends of reproductive hormones were similar with 1st except P4, which was positive correlated with embryo yield. The metabolomics analysis showed that 1158 metabolites (721 in positive iron mode and 437 in negative iron mode) were detected and 617 were annotated. In 1st comparation of high and low embryonic yield populations, 56 and 53 differential metabolites were identified in IE and SE group, respectively. The phosphatidyl choline (PC) (19:0/20:5) and PC (18:2/18:3) were shared in two groups. In 2nd comparation, 48 and 49 differential metabolites were identified in IE and SE group, respectively. The PC (18:1/18:2) and pentadecanoic acid were shared. Most differential metabolites were significantly enriched in amino acid, fatty acid metabolism, digestive system secretion and ovarian steroidogenesis pathways. CONCLUSIONS: This study showed that FSH, P4, AMH, the PC relevant metabolites and some anomic acids could be potential biomarkers for embryonic yield prediction in ovine multiple ovulation. The results would help to explain the relation between blood material and ovarian function and provide a theoretical basis for the multiple ovulation prediction.


Assuntos
Ovulação , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida/veterinária , Estradiol , Feminino , Hormônio Foliculoestimulante , Ferro , Hormônio Luteinizante , Progesterona , Ovinos , Espectrometria de Massas em Tandem/veterinária
8.
J Dairy Res ; 88(4): 420-424, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34865665

RESUMO

We characterized the proteome profile of mid-lactation small-tailed Han (STH) and DairyMeade (DM) ovine milk in order to explore physiological variation and differences in milk traits between the two breeds. Methodology combined a tandem mass tag (TMT) proteomic approach with LC-MS/MS technology. A total of 656 proteins were identified in STH and DM ovine milk, of which 17and 29 proteins were significantly upregulated (P < 0.05) in STH and DM, respectively. Immune-related proteins and disease-related proteins were highly expressed in STH milk, whereas S100A2 and AEBP1 were highly expressed in DM milk, which had beneficial effects on mammary gland development and milk yield. Our results provide a theoretical basis for future breeding of dairy sheep.


Assuntos
Leite , Proteoma , Animais , Cromatografia Líquida/veterinária , Feminino , Lactação , Proteômica , Ovinos , Espectrometria de Massas em Tandem/veterinária , Soro do Leite
9.
Theriogenology ; 176: 54-62, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34571398

RESUMO

The efficiency of animal artificial breeding in vitro is still low. Oxidative damage is an important obstacle for in vitro artificial breeding of animals. Melatonin can reduce the degree of oxidative damage to both gametes and embryos caused by the external environment. However, there is still some controversy concerning the effect of melatonin on frozen semen, especially in the processes of freezing semen, IVM, IVF and IVC. Here, the effects of melatonin on the whole processes of sperm cryopreservation, oocyte maturation, and embryonic development were studied. The results demonstrated that melatonin at 10-3 M concentration significantly improved progressive sperm viability, plasma membrane integrity, mitochondrial membrane integrity, and acrosome integrity; however, there were also individual differences between bulls, depending on the age of different individuals. The 10-3 M melatonin treatment reduced the reactive oxygen species (ROS) level by nearly 50% in sperm during IVF. Meanwhile, during IVM, the addition of 10-7 M melatonin significantly increased the maturation rate of oocytes and reduced the ROS levels by 58.8%. In addition, 10-7 M melatonin improved the total cell numbers of the IVF blastocysts. Notably, treatment of IVF embryos with melatonin significantly reduced the levels of ROS and influenced the expression levels of key regulatory genes associated with embryo genome activation. This study is of significance for understanding the function of melatonin in animal artificial breeding.


Assuntos
Melatonina , Preservação do Sêmen , Animais , Bovinos , Criopreservação/veterinária , Embrião de Mamíferos , Feminino , Expressão Gênica , Masculino , Melatonina/farmacologia , Gravidez , Sêmen , Preservação do Sêmen/veterinária , Espermatozoides
10.
J Dairy Res ; 88(2): 201-204, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33985604

RESUMO

We have previously bred Chinese local dairy sheep through grading up with local Small-Tailed Han (STH) sheep as female parent and DairyMeade (DM) sheep as male parent. In this research communication we characterize the whey protein profile of STH sheep and their offspring (F1, F2) to reveal physiological differences and variation in milk traits. A total of 1032 whey proteins were identified through tandem mass tag labeling (TMT) proteome profiling. Three proteins were significantly differentially abundant between F1 and STH milk, six between F2 and STH milk and five between F1 and F2 milk. In terms of differential changes between generations, WASHC4 and CUTA of F1 and Ig-like domain-containing protein of F2 milk were dominant whey proteins. Overall, the results showed that the whey protein profiles of different generations varied little. The crossbreeds of STH and DM sheep would be suitable for the development of the Chinese local sheep milk industry, and the F2 may be a better population for sheep milk production.


Assuntos
Leite/química , Proteômica , Ovinos , Proteínas do Soro do Leite/análise , Animais , Cruzamento , China , Cruzamentos Genéticos , Indústria de Laticínios , Feminino , Masculino , Proteômica/métodos
11.
Stem Cell Res Ther ; 11(1): 143, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245517

RESUMO

BACKGROUND: Factors such as poor engraftment, retention, and survival of the transplanted stem cells are deemed to limit their therapeutic efficacy for wound regeneration. Hence, it is necessary to explore these issues in order to resolve them. In this study, we aim to investigate the role of Pluronic F-127 (PF-127) hydrogel plus antioxidant sodium ascorbyl phosphate (SAP) in enhancing Wharton's jelly mesenchymal stem cell (WJMSC)-mediated effectiveness on full-thickness skin wound healing in mice. METHODS: First, the cytotoxicity of PF-127 and the biological effect of SAP on the survival of WJMSCs were tested in vitro using cell viability and proliferation assays. Next, a cell suspension containing WJMSCs, PF-127, and SAP was topically administered onto an 8-mm diameter excisional full-thickness wound bed. Eight days after transplantation, the mice were sacrificed and the skin tissue was excised for histological and immunohistochemical analysis. Finally, in vivo distribution of transplanted WJMSCs was traced to investigate cell engraftment and the potential therapeutic mechanism. RESULTS: PF-127 was found to be cytotoxic to WJMSCs while SAP significantly improved the survival of PF-127-embedded WJMSCs. When this combination was topically transplanted onto the wound bed, wound healing was facilitated and dermis regeneration was achieved on the 8th day after surgery, as evidenced by an increase in dermal thickness, newly developed hair follicles, and collagen fiber deposition accompanied by a reduction in scar width. Further, immunohistochemical analysis demonstrated a higher number of anti-inflammatory M2 macrophages, proliferating cells, and newly formed blood vessels in the WJMSCs/PF-127/SAP group relative to all other groups. In addition, in vivo tracking results revealed a highly enhanced engraftment of WJMSCs accumulated in the dermis in the WJMSCs/PF-127/SAP group. CONCLUSIONS: SAP significantly improves the survival of WJMSCs in PF-127 encapsulation. Further, PF-127 plus SAP is an effective combination that enhances WJMSC engraftment in the dermis, which then promotes full-thickness wound healing through potential M2 macrophage formation and angiogenesis.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Ácido Ascórbico/análogos & derivados , Hidrogéis , Camundongos , Poloxâmero , Cicatrização
12.
Sci China Life Sci ; 63(7): 996-1005, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31974864

RESUMO

Cytosine and adenine base editors are promising new tools for introducing precise genetic modifications that are required to generate disease models and to improve traits in pigs. Base editors can catalyze the conversion of C→T (C>T) or A→G (A>G) in the target site through a single guide RNA. Injection of base editors into the zygote cytoplasm can result in the production of offspring with precise point mutations, but most F0 are mosaic, and breeding of F1 heterozygous pigs is time-intensive. Here, we developed a method called germinal vesicle oocyte base editing (GVBE) to produce point mutant F0 porcine embryos by editing the maternal alleles during the GV to MII transition. Injection of cytosine base editor 3 (BE3) mRNA and X-linked Dmd-specific guide RNAs into GVoocytes efficiently edited maternal Dmd during in vitro maturation and did not affect the maturation potential of the oocytes. The edited MII oocytes developed into blastocysts after parthenogenetic activation (PA) or in vitro fertilization (IVF). However, BE3 may reduce the developmental potential of IVF blastocysts from 31.5%±0.8% to 20.4% ±2.1%. There 40%-78.3% diploid PA blastocysts had no more than two different alleles, including up to 10% embryos that had only C>T mutation alleles. Genotyping of IVF blastocysts indicated that over 70% of the edited embryos had one allele or two different alleles of Dmd. Since the male embryos had only a copy of Dmd allele, all five (5/19) F0 male embryos are homozygous and three of them were Dmd precise C>T mutation. Nine (9/19) female IVF embryos had two different alleles including a WT and a C>T mutation. DNA sequencing showed that some of them might be heterozygous embryos. In conclusion, the GVBE method is a valuable method for generating F0 embryos with maternal point mutated alleles in a single step.


Assuntos
Citosina/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Genoma/genética , Oócitos/metabolismo , Alelos , Animais , Animais Geneticamente Modificados , Blastocisto , Citoplasma/metabolismo , Citosina/administração & dosagem , Feminino , Fertilização , Fertilização in vitro , Edição de Genes , Masculino , Mutação , RNA Guia de Cinetoplastídeos , Suínos
13.
Genes Genomics ; 42(3): 283-290, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31833047

RESUMO

BACKGROUND: The development efficiency of cloned cattle is extremely low (< 5%), most of them were aborted at late gestation. Based on our previous studies, some recipient cows with a cloned fetus would present as engorged uterine vessels and enlarged umbilical vessels randomly. Abortion involves both maternal and fetal factors. OBJECTIVE: Our aim was to explore this phenomenon by microRNAs expression profile analysis of maternal corpus luteum (CL), which was related to pregnancy maintenance. METHODS: The present study provided the comparison of maternal CL miRNAs expression of abnormally and normally developed cloned bovine fetus at late gestation (~ 210 days) using RNA-Seq technology. RESULTS: We selected two abnormally pregnant cows (abnormal group, AG) and three normally pregnant cows (normal group, NG) and acquired valid reads of 9317,261-12,327,185 (~ 84.53-91.28%) from five libraries. In total, we identified 981 conserved miRNAs and 223 novel miRNAs. 1052 miRNAs were co-expressed, 124 miRNAs were uniquely expressed in AG, and 93 miRNAs were uniquely expressed in the NG. Compared with NG, 11 were significantly overexpressed, and 22 were downregulated (p < 0.05) at AG among 1052 co-expressed miRNAs. The differentially expressed miRNAs-targeted genes were further analyzed by Gene Ontology and KEGG pathway analysis. Notably, the steroid biosynthesis pathway was a significantly enriched term (p < 0.01), which may affect the secretion of progesterone. CONCLUSION: Our research suggested that abnormal miRNAs expression of bovine maternal CL may affect the pregnant status at late gestation.


Assuntos
Bovinos/embriologia , Bovinos/genética , Corpo Lúteo/metabolismo , Feto/metabolismo , MicroRNAs/metabolismo , Animais , Bovinos/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Ontologia Genética , Idade Gestacional , MicroRNAs/genética , Gravidez , Progesterona/genética , Progesterona/metabolismo , RNA-Seq
14.
Sci Rep ; 9(1): 20035, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882783

RESUMO

The dysfunction of placenta is common in somatic cell nuclear transfer (SCNT) cloned cattle and would cause aberrant fetal development and even abortion, which occurred with highest rate at the mid- to late gestation. However, the mechanism of abnormal placentas was unclear. To analyze the transcriptome-wide characteristics of abnormal placentas in SCNT cloned cattle, the mRNA, lncRNA and miRNA of placental cotyledon tissue at day 180 after gestation were sequenced. A total of 19,055 mRNAs, 30,141 lncRNAs and 684 miRNAs were identified. Compared with control group, 362 mRNAs, 1,272 lncRNAs and nine miRNAs (six known and three novel miRNAs) were differentially expressed (fold change ≥ 2 and P-value < 0.05). The differentially expressed genes were functionally enriched in urea and ions transmembrane transport, which indicated that the maternal-fetal interactions were disturbed in impaired placentas. Furthermore, the competing endogenous RNAs (ceRNAs) networks were identified to illustrate their roles in abnormal placental morphology. The present research would be helpful to discover the mechanism of late gestational abnormality of SCNT cattle by provides important genomic information and insights.


Assuntos
Perfilação da Expressão Gênica , Técnicas de Transferência Nuclear , Placenta/metabolismo , Animais , Bovinos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gravidez
15.
J Genet Genomics ; 46(7): 335-342, 2019 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31378649

RESUMO

Genetically modified pigs represent a great promise for generating models of human diseases and producing new breeds. Generation of genetically edited pigs using somatic cell nuclear transfer (SCNT) or zygote cytoplasmic microinjection is a tedious process due to the low developmental rate or mosaicism of the founder (F0). Herein, we developed a method termed germinal vesicle oocyte gene editing (GVGE) to produce non-mosaic porcine embryos by editing maternal alleles during the GV to MⅡ transition. Injection of Cas9 mRNA and X-linked Dmd gene-specific gRNA into GV oocytes did not affect their developmental potential. The MⅡ oocytes edited during in vitro maturation (IVM) could develop into blastocysts after parthenogenetic activation (PA) or in vitro fertilization (IVF). Genotyping results indicated that the maternal gene X-linked Dmd could be efficiently edited during oocyte maturation. Up to 81.3% of the edited IVF embryos were non-mosaic Dmd gene mutant embryos. In conclusion, GVGE might be a valuable method for the generation of non-mosaic maternal allele edited F0 embryos in a short simple step.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma , Técnicas de Transferência Nuclear , Oócitos/metabolismo , Animais , Animais Geneticamente Modificados , Genes Ligados ao Cromossomo X , RNA Guia de Cinetoplastídeos , RNA Mensageiro/genética , Análise de Sequência de DNA , Suínos
16.
J Clin Lab Anal ; 33(6): e22918, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31131498

RESUMO

BACKGROUNDS: One of the limitations of somatic cell nuclear transfer (SCNT) strategy to generate genetically modified offspring is the low birth rate. Placental dysfunction is one of the causes of abortion. Circular RNA (circRNA) is noncoding RNA which functions as microRNA (miRNA) sponges in biological processes. METHODS: Two aberrant pregnant placenta (aberrant group, AG) and three normal pregnant placenta (normal group, NG) during late gestation (180-210 days) with bovine SCNT fetus were collected for high-throughput sequencing and analyzed. The host genes of differentially expressed (DE) circRNAs were predicted. And the microRNAs (miRNAs) which could interact with DE circRNAs were analyzed. Then, the expressional level of partial DE circRNAs and corresponding host genes was verified through qRT-PCR. At last, the function of host genes was analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS: Altogether 123 differentially expressed circRNAs between two groups were identified, which were found related to 60 host genes and 32 miRNAs. The top 10 upregulated circRNAs were bta_circ_0012985, bta_circ_0013071, bta_circ_0013074, bta_circ_0016024, bta_circ_0013068, bta_circ_0008816, bta_circ_0012982, bta_circ_0013072, bta_circ_0019285, and bta_circ_0013067. The top 10 downregulated circRNAs were bta_circ_0024234, bta_circ_0017528, bta_circ_0008077, bta_circ_0003222, bta_circ_0007500, bta_circ_0020328, bta_circ_0011001, bta_circ_0016364, bta_circ_0008839, and bta_circ_0016049. The qRT-PCR results showed consistent trend with sequencing analysis result, while host genes had no statistic difference. The GO and KEGG analyses of the host genes suggested that abnormal circRNA expression may play multiple roles in placental structure and dysfunction. CONCLUSION: The abnormal circRNA expression may be one of reasons of placental dysfunction, leads to abortion of bovine SCNT fetus.


Assuntos
Técnicas de Transferência Nuclear , Placenta/fisiologia , RNA Circular/genética , Animais , Bovinos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Idade Gestacional , MicroRNAs/genética , Placenta/fisiopatologia , Gravidez , Reprodutibilidade dos Testes
17.
RNA Biol ; 16(1): 144-153, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30593263

RESUMO

Pax3 plays an essential role in myogenesis. Previously, we found a tumor-signature chimeric fusion RNA, PAX3-FOXO1 also present during muscle differentiation, raising the possibility of its physiological role. Here we demonstrated that the fusion is needed transiently for muscle lineage commitment. Interestingly, the fusion ortholog was not found in seven mouse muscle differentiation/regeneration systems, nor in other stem cell differentiation systems of another three mammal species. We noticed that Pax3 is expressed at a much lower level in human stem cells, and during muscle differentiation than in other mammals. Given the fact that the fusion and the parental Pax3 share common downstream targets, we reasoned that forming the fusion may be a mechanism for human cells to escape certain microRNA regulation on Pax3. By sequence comparison, we identified 16 candidate microRNAs that may specifically target the human PAX3 3'UTR. We used a luciferase reporter assay, examined the microRNAs expression, and conducted mutagenesis on the reporters, as well as a CRISPR/Cas9 mediated editing on the endogenous allele. Finally, we identified miR-495 as a microRNA that specifically targets human PAX3. Examining several other fusion RNAs revealed that the human-specificity is not limited to PAX3-FOXO1. Based on these observations, we conclude that PAX3-FOXO1 fusion RNA is absent in mouse, or other mammals we tested, the fusion RNA is a mechanism to escape microRNA, miR-495 regulation in humans, and that it is not the only human-specific fusion RNA.


Assuntos
Diferenciação Celular , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Desenvolvimento Muscular , Fator de Transcrição PAX3/metabolismo , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proteína Forkhead Box O1/genética , Edição de Genes , Técnicas de Silenciamento de Genes , Genes Reporter , Cavalos , Humanos , Camundongos , Desenvolvimento Muscular/genética , Fator de Transcrição PAX3/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Ovinos , Suínos
18.
Theriogenology ; 119: 282-288, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30075414

RESUMO

Gene editing tools (Zinc-Finger Nucleases, ZFN; Transcription Activator-Like Effector Nucleases, TALEN; and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas)9, CRISPR-Cas9) provide us with a powerful means of performing genetic engineering procedures. A combinational approach that utilizes both somatic cell nuclear transfer (SCNT) and somatic cell gene editing facilitates the generation of genetically engineered animals. However, the associated research has utilized markers and/or selected genes, which constitute a potential threat to biosafety. Microhomologous-mediated end-joining (MMEJ) has showed the utilization of micro-homologous arms (5-25 bp) can mediate exogenous gene insertion. Dairy milk is a major source of nutrition worldwide. However, most people are not capable of optimally utilizing the nutrition in milk because of lactose intolerance. Sulfolobus solfataricus ß-glycosidase (LacS) is a lactase derived from the extreme thermophilic archaeon Sulfolobus solfataricus. Our finally aim was to site-specific integrated LacS gene into cow's genome through TALEN-mediated MMEJ and produce low-lactose cow. Firstly, we constructed TALENs vectors which target to the cow's ß-casein locus and LacS gene expression vector which contain TALEN reorganization sequence and micro-homologous arms. Then we co-transfected these vectors into fetal derived skin fibroblasts and cultured as monoclone. Positive cell clones were screened using 3' junction PCR amplification and sequencing analysis. The positive cells were used as donors for SCNT and embryo transfer (ET). Lastly, we detected the genotype through PCR of blood genomic DNA. This resulted in a LacS knock-in rate of 0.8% in TALEN-treated cattle fetal fibroblasts. The blastocyst rate of SCNT embryo was 27%. The 3 months pregnancy rate was 20%. Finally, we obtained 1 newborn cow (5%) and verified its genotype. We obtained 1 site-specific marker-free LacS transgenic cow. It provides a basis to solve lactose intolerance by gene engineering breeding. This study also provides us with a new strategy to facilitate gene knock-ins in livestock using techniques that exhibit improved biosafety and intuitive methodologies.


Assuntos
Bovinos/genética , Edição de Genes/veterinária , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Sistemas CRISPR-Cas , DNA , Feminino , Edição de Genes/métodos , Engenharia Genética/métodos , Genótipo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
19.
In Vitro Cell Dev Biol Anim ; 54(4): 287-294, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29464408

RESUMO

Foot-and-mouth disease (FMD) commonly occurs via the respiratory tract, and bovine nasopharyngeal mucosal epithelial cells are the primary infection cells in cattle. The aim of the present study was to isolate and culture epithelial cells from the bovine nasopharyngeal mucosa in vitro using a mechanical separation method. The cells were expanded, established in continuous cell culture, and used for immunofluorescence cytochemistry and establishment of infection models. We detected pan-cytokeratin markers of bovine nasopharyngeal mucosal epithelial cells by immunofluorescence. Bovine nasopharyngeal mucosal epithelial cells were then infected with foot-and-mouth disease virus (FMDV) serum type O. RT-PCR demonstrated the successful establishment of acute FMDV infection in the cell models. This infection model provides the basis for clarification of the interaction between FMDV and host bovine nasopharyngeal mucosal epithelial cells in vitro.


Assuntos
Doenças dos Bovinos/virologia , Febre Aftosa/patologia , Animais , Bovinos , Doenças dos Bovinos/patologia , Técnicas de Cultura de Células/veterinária , Células Cultivadas , Células Epiteliais/patologia , Células Epiteliais/virologia , Nasofaringe/patologia , Nasofaringe/virologia
20.
Sheng Wu Gong Cheng Xue Bao ; 32(2): 212-21, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-27382771

RESUMO

In order to establish marker-free transgenic cell lines, we cloned Fat-1 gene, attB and Loxp sequences by PCR. Then we inserted these sequences to pN1-EGFP vector and got pEGFP-N1-Fat-1 expression vector. PhiC31 integrase mRNA which was generated by in vitro transcription and a pEGFP-N1-Fat-1 expression vector co-electroporated into sheep fetal fibroblasts, and then we got transgenic cell lines expressing green fluorescence. Prokaryotic expression and purification of Cre recombinant protein was performed. Cre recombinant protein was transducted into stably-transfected cell colonies. We identified cell colonies by sequencing and established marker-free transgenic cell lines and eventually- established marker-free transgenic cell lines which were building more safely basic for producing Fat-1 transgenic animals.


Assuntos
Animais Geneticamente Modificados , Caderinas/genética , Linhagem Celular/citologia , Fibroblastos/citologia , Vetores Genéticos , Ovinos/genética , Animais , Eletroporação , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA