Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
bioRxiv ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39372772

RESUMO

"GABA dysfunction" is a major hypothesis for the biological basis of schizophrenia with indirect supporting evidence from human post-mortem brain and genetic studies. Patient-derived induced pluripotent stem cells (iPSCs) have emerged as a valuable platform for modeling psychiatric disorders, and previous modeling has revealed glutamatergic synapse deficits. Whether GABAergic synapse properties are affected in patient-derived human neurons and how this impacts neuronal network activity remain poorly understood. Here we optimized a protocol to differentiate iPSCs into highly enriched ganglionic eminence-like neural progenitors and GABAergic neurons. Using a collection of iPSCs derived from patients of psychiatric disorders carrying a Disrupted-in-Schizophrenia 1 ( DISC1 ) mutation and their unaffected family member, together with respective isogenic lines, we identified mutation-dependent deficits in GABAergic synapse formation and function, a phenotype similar to that of mutant glutamatergic neurons. However, mutant glutamatergic and GABAergic neurons contribute differentially to neuronal network excitability and synchrony deficits. Finally, we showed that GABAergic synaptic transmission is also defective in neurons derived from several idiopathic schizophrenia patient iPSCs. Transcriptome analysis further showed some shared gene expression dysregulation, which is more prominent in DISC1 mutant neurons. Together, our study supports a functional GABAergic synaptic deficit in major psychiatric disorders.

2.
Proc Natl Acad Sci U S A ; 121(40): e2405117121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312657

RESUMO

Cholinergic neurons in the basal forebrain play a crucial role in regulating adult hippocampal neurogenesis (AHN). However, the circuit and molecular mechanisms underlying cholinergic modulation of AHN, especially the initial stages of this process related to the generation of newborn progeny from quiescent radial neural stem cells (rNSCs), remain unclear. Here, we report that stimulation of the cholinergic circuits projected from the diagonal band of Broca (DB) to the dentate gyrus (DG) neurogenic niche promotes proliferation and morphological development of rNSCs, resulting in increased neural stem/progenitor pool and rNSCs with longer radial processes and larger busy heads. Interestingly, DG granule cells (GCs) are required for DB-DG cholinergic circuit-dependent modulation of proliferation and morphogenesis of rNSCs. Furthermore, single-nucleus RNA sequencing of DG reveals cell type-specific transcriptional changes in response to cholinergic circuit stimulation, with GCs (among all the DG niche cells) exhibiting the most extensive transcriptional changes. Our findings shed light on how the DB-DG cholinergic circuits orchestrate the key niche components to support neurogenic function and morphogenesis of rNSCs at the circuit and molecular levels.


Assuntos
Neurônios Colinérgicos , Giro Denteado , Células-Tronco Neurais , Neurogênese , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Giro Denteado/metabolismo , Giro Denteado/citologia , Neurogênese/fisiologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Camundongos , Proliferação de Células , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/fisiologia , Células-Tronco Adultas/citologia , Morfogênese , Nicho de Células-Tronco/fisiologia , Masculino
3.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36993480

RESUMO

The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human DRG (hDRG) neurons-critical in-formation to decipher their functions-are lacking due to technical difficulties. Here, we developed a novel approach to isolate individual hDRG neuron somas for deep RNA sequencing (RNA-seq). On average, >9,000 unique genes per neuron were detected, and 16 neuronal types were identified. Cross-species analyses revealed remarkable divergence among pain-sensing neurons and the existence of human-specific nociceptor types. Our deep RNA-seq dataset was especially powerful for providing insight into the molecular mechanisms underlying human somatosensation and identifying high potential novel drug targets. Our dataset also guided the selection of molecular markers to visualize different types of human afferents and the discovery of novel functional properties using single-cell in vivo electrophysiological recordings. In summary, by employing a novel soma sequencing method, we generated an unprecedented hDRG neuron atlas, providing new insights into human somatosensation, establishing a critical foundation for translational work, and clarifying human species-species properties.

6.
Cell Stem Cell ; 29(11): 1594-1610.e8, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332572

RESUMO

The molecular diversity of glia in the human hippocampus and their temporal dynamics over the lifespan remain largely unknown. Here, we performed single-nucleus RNA sequencing to generate a transcriptome atlas of the human hippocampus across the postnatal lifespan. Detailed analyses of astrocytes, oligodendrocyte lineages, and microglia identified subpopulations with distinct molecular signatures and revealed their association with specific physiological functions, age-dependent changes in abundance, and disease relevance. We further characterized spatiotemporal heterogeneity of GFAP-enriched astrocyte subpopulations in the hippocampal formation using immunohistology. Leveraging glial subpopulation classifications as a reference map, we revealed the diversity of glia differentiated from human pluripotent stem cells and identified dysregulated genes and pathological processes in specific glial subpopulations in Alzheimer's disease (AD). Together, our study significantly extends our understanding of human glial diversity, population dynamics across the postnatal lifespan, and dysregulation in AD and provides a reference atlas for stem-cell-based glial differentiation.


Assuntos
Doença de Alzheimer , Transcriptoma , Humanos , Transcriptoma/genética , Longevidade/genética , Neuroglia/patologia , Hipocampo , Astrócitos/patologia , Doença de Alzheimer/patologia
7.
Nature ; 607(7919): 527-533, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794479

RESUMO

Immature dentate granule cells (imGCs) arising from adult hippocampal neurogenesis contribute to plasticity and unique brain functions in rodents1,2 and are dysregulated in multiple human neurological disorders3-5. Little is known about the molecular characteristics of adult human hippocampal imGCs, and even their existence is under debate1,6-8. Here we performed single-nucleus RNA sequencing aided by a validated machine learning-based analytic approach to identify imGCs and quantify their abundance in the human hippocampus at different stages across the lifespan. We identified common molecular hallmarks of human imGCs across the lifespan and observed age-dependent transcriptional dynamics in human imGCs that suggest changes in cellular functionality, niche interactions and disease relevance, that differ from those in mice9. We also found a decreased number of imGCs with altered gene expression in Alzheimer's disease. Finally, we demonstrated the capacity for neurogenesis in the adult human hippocampus with the presence of rare dentate granule cell fate-specific proliferating neural progenitors and with cultured surgical specimens. Together, our findings suggest the presence of a substantial number of imGCs in the adult human hippocampus via low-frequency de novo generation and protracted maturation, and our study reveals their molecular properties across the lifespan and in Alzheimer's disease.


Assuntos
Envelhecimento , Hipocampo , Longevidade , Neurogênese , Neurônios , Adulto , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Proliferação de Células , Giro Denteado/citologia , Giro Denteado/patologia , Perfilação da Expressão Gênica , Hipocampo/citologia , Hipocampo/patologia , Humanos , Longevidade/genética , Aprendizado de Máquina , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica
8.
Cell Stem Cell ; 28(9): 1657-1670.e10, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33961804

RESUMO

Human brain organoids represent remarkable platforms for recapitulating features of human brain development and diseases. Existing organoid models do not resolve fine brain subregions, such as different nuclei in the hypothalamus. We report the generation of arcuate organoids (ARCOs) from human induced pluripotent stem cells (iPSCs) to model the development of the human hypothalamic arcuate nucleus. Single-cell RNA sequencing of ARCOs revealed significant molecular heterogeneity underlying different arcuate cell types, and machine learning-aided analysis based on the neonatal human hypothalamus single-nucleus transcriptome further showed a human arcuate nucleus molecular signature. We also explored ARCOs generated from Prader-Willi syndrome (PWS) patient iPSCs. These organoids exhibit aberrant differentiation and transcriptomic dysregulation similar to postnatal hypothalamus of PWS patients, indicative of cellular differentiation deficits and exacerbated inflammatory responses. Thus, patient iPSC-derived ARCOs represent a promising experimental model for investigating nucleus-specific features and disease-relevant mechanisms during early human arcuate development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Prader-Willi , Diferenciação Celular , Humanos , Hipotálamo , Organoides
9.
Mol Psychiatry ; 26(4): 1346-1360, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31444471

RESUMO

Psychiatric disorders are a collection of heterogeneous mental disorders arising from a contribution of genetic and environmental insults, many of which molecularly converge on transcriptional dysregulation, resulting in altered synaptic functions. The underlying mechanisms linking the genetic lesion and functional phenotypes remain largely unknown. Patient iPSC-derived neurons with a rare frameshift DISC1 (Disrupted-in-schizophrenia 1) mutation have previously been shown to exhibit aberrant gene expression and deficits in synaptic functions. How DISC1 regulates gene expression is largely unknown. Here we show that Activating Transcription Factor 4 (ATF4), a DISC1 binding partner, is more abundant in the nucleus of DISC1 mutant human neurons and exhibits enhanced binding to a collection of dysregulated genes. Functionally, overexpressing ATF4 in control neurons recapitulates deficits seen in DISC1 mutant neurons, whereas transcriptional and synaptic deficits are rescued in DISC1 mutant neurons with CRISPR-mediated heterozygous ATF4 knockout. By solving the high-resolution atomic structure of the DISC1-ATF4 complex, we show that mechanistically, the mutation of DISC1 disrupts normal DISC1-ATF4 interaction, and results in excessive ATF4 binding to DNA targets and deregulated gene expression. Together, our study identifies the molecular and structural basis of an DISC1-ATF4 interaction underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos Mentais , Fator 4 Ativador da Transcrição/genética , Humanos , Proteínas do Tecido Nervoso/genética , Neurônios
10.
Cell Stem Cell ; 26(5): 766-781.e9, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142682

RESUMO

Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/ß-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neocórtex , Humanos , Neurogênese , Neurônios , Organoides
11.
Pathol Oncol Res ; 26(1): 533-539, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30523602

RESUMO

MiR-374a was proved to take part in the initiation and development of several cancers. However, the molecular mechanism of miR-374a in osteosarcoma (OS) cells remains unclear. The aim of our research was to investigate the role of miR-374a in OS cells migration and clarify the potential mechanisms. Quantitative real-time PCR (qRT-PCR) and western blot analysis were applied to evaluate the expression of miR-374a and Wnt inhibitory factor-1 (WIF-1). Bioinformatical methods and luciferase reporter assay were carried out to predict and confirm the combination of miR-374a and WIF-1. Transwell and wound healing assays were performed to detect the migration capacity of OS cells. Lithium chloride (LiCl) was used to investigate the role of LiCl-activated Wnt/ß-catenin signaling pathway in regulating cell migration. Our studies revealed that miR-374a was up-regulated whereas WIF-1 was down-regulated in OS cells. Besides, WIF-1 was the target of miR-374a by performing luciferase reporter assay. By transfection of miR-374a inhibitor and/or WIF-1 siRNA to OS cells, we found that miR-374a promoted the migration of OS cells. In addition, the inhibition of WIF-1 abolished the miR-374a inhibitor-induced migration suppression of OS cells. LiCl experiment revealed that miR-374a promoted OS cells migration by regulating Wnt/ß-catenin signaling. In conclusion, miR-374a promotes OS cells migration by activating Wnt/ß-catenin signaling pathway via targeting WIF-1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/metabolismo , Osteossarcoma/patologia , Via de Sinalização Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Humanos , MicroRNAs/genética
12.
Nutr Metab (Lond) ; 16: 70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636690

RESUMO

BACKGROUND: Elderly people with type 2 diabetes mellitus (T2DM) have an increased risk of diabetes-related microvascular and macrovascular complications, thus diabetic patients with a functioning gastrointestinal tract but without sufficient oral intake require enteral nutrition (EN) formulas to control blood glucose. White sweet potato (WSP) was a kind of sweet potato could provide a healthy carbohydrate source to EN formula. The aim of this study was to examine at risk of malnutrition T2DM patients whether a WSP-EN would attenuate glucose response and elevate nutritional index compared to a standard polymeric formulas. METHODS: In this randomized, parallel, placebo-controlled, pilot clinical trial to investigate the effects of EN with WSP on aged residents with T2DM in long-term care institutions. In total, 54 eligible participants were randomly assigned to either the non-WSP-EN or WSP-EN group. For 60 days, the WSP-EN group received a WSP formula through nasogastric tube via a stoma with a large-bore syringe. The participants received EN of standard polymeric formulas without WSP in the non-WSP-EN group. RESULTS: The body weight, body mass index, Mini Nutritional Assessment score, and Geriatric Nutritional Risk Index were significantly higher in the WSP-EN group (p < 0.05). Moreover, the WSP-EN intervention reduced glycated hemoglobin levels (6.73% ± 1.47% vs. 6.40% ± 1.16%), but increased transferrin (223.06 ± 38.85 vs. 245.85 ± 46.08 mg/dL), high-density lipoprotein cholesterol (42.13 ± 10.56 vs. 44.25 ± 8.43 mg/dL), and vitamin A (2.45 ± 0.77 vs 2.74 ± 0.93 µM) levels (p < 0.05). In addition, there was no important side effects including gastrointestinal intolerance with prescribed doses in our WSP-EN treated patients when compared with control ones. CONCLUSIONS: The results suggest WSP incorporated into enteral formulas can improve nutrition status and glycemic control in elderly diabetic patients. TRIAL REGISTRATION: NCT02711839, registered 27 May 2015.

13.
Cell ; 177(3): 654-668.e15, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929900

RESUMO

New neurons arise from quiescent adult neural progenitors throughout life in specific regions of the mammalian brain. Little is known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+ precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give rise to proliferative Hopx+ neural progenitors in the primitive dentate region, and they, in turn, generate granule neurons, but not other neurons, throughout development and then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period. RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal, and adult dentate neural progenitors further reveal common molecular and epigenetic signatures and developmental dynamics. Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes to dentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelong extension of development that maintains heightened plasticity in the mammalian hippocampus.


Assuntos
Células-Tronco Embrionárias/metabolismo , Neurogênese , Animais , Diferenciação Celular , Giro Denteado/metabolismo , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
14.
Nature ; 563(7730): 249-253, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30401835

RESUMO

N6-methyladenosine (m6A), the most prevalent internal RNA modification on mammalian messenger RNAs, regulates the fates and functions of modified transcripts through m6A-specific binding proteins1-5. In the nervous system, m6A is abundant and modulates various neural functions6-11. Whereas m6A marks groups of mRNAs for coordinated degradation in various physiological processes12-15, the relevance of m6A for mRNA translation in vivo remains largely unknown. Here we show that, through its binding protein YTHDF1, m6A promotes protein translation of target transcripts in response to neuronal stimuli in the adult mouse hippocampus, thereby facilitating learning and memory. Mice with genetic deletion of Ythdf1 show learning and memory defects as well as impaired hippocampal synaptic transmission and long-term potentiation. Re-expression of YTHDF1 in the hippocampus of adult Ythdf1-knockout mice rescues the behavioural and synaptic defects, whereas hippocampus-specific acute knockdown of Ythdf1 or Mettl3, which encodes the catalytic component of the m6A methyltransferase complex, recapitulates the hippocampal deficiency. Transcriptome-wide mapping of YTHDF1-binding sites and m6A sites on hippocampal mRNAs identified key neuronal genes. Nascent protein labelling and tether reporter assays in hippocampal neurons showed that YTHDF1 enhances protein synthesis in a neuronal-stimulus-dependent manner. In summary, YTHDF1 facilitates translation of m6A-methylated neuronal mRNAs in response to neuronal stimulation, and this process contributes to learning and memory.


Assuntos
Adenina/análogos & derivados , Hipocampo/citologia , Hipocampo/fisiologia , Memória/fisiologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenina/metabolismo , Animais , Sítios de Ligação , Feminino , Masculino , Metiltransferases/deficiência , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Aprendizagem Espacial/fisiologia , Transmissão Sináptica
15.
Cell Stem Cell ; 23(3): 444-452.e4, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30174295

RESUMO

Adult neurogenesis, arising from quiescent radial-glia-like neural stem cells (RGLs), occurs throughout life in the dentate gyrus. How neural stem cells are maintained throughout development to sustain adult mammalian neurogenesis is not well understood. Here, we show that milk fat globule-epidermal growth factor (EGF) 8 (Mfge8), a known phagocytosis factor, is highly enriched in quiescent RGLs in the dentate gyrus. Mfge8-null mice exhibit decreased adult dentate neurogenesis, and furthermore, adult RGL-specific deletion of Mfge8 leads to RGL overactivation and depletion. Similarly, loss of Mfge8 promotes RGL activation in the early postnatal dentate gyrus, resulting in a decreased number of label-retaining RGLs in adulthood. Mechanistically, loss of Mfge8 elevates mTOR1 signaling in RGLs, inhibition of which by rapamycin returns RGLs to quiescence. Together, our study identifies a neural-stem-cell-enriched niche factor that maintains quiescence and prevents developmental exhaustion of neural stem cells to sustain continuous neurogenesis in the adult mammalian brain.


Assuntos
Células-Tronco Adultas/metabolismo , Antígenos de Superfície/metabolismo , Proteínas do Leite/metabolismo , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout
16.
Cell ; 171(4): 877-889.e17, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28965759

RESUMO

N6-methyladenosine (m6A), installed by the Mettl3/Mettl14 methyltransferase complex, is the most prevalent internal mRNA modification. Whether m6A regulates mammalian brain development is unknown. Here, we show that m6A depletion by Mettl14 knockout in embryonic mouse brains prolongs the cell cycle of radial glia cells and extends cortical neurogenesis into postnatal stages. m6A depletion by Mettl3 knockdown also leads to a prolonged cell cycle and maintenance of radial glia cells. m6A sequencing of embryonic mouse cortex reveals enrichment of mRNAs related to transcription factors, neurogenesis, the cell cycle, and neuronal differentiation, and m6A tagging promotes their decay. Further analysis uncovers previously unappreciated transcriptional prepatterning in cortical neural stem cells. m6A signaling also regulates human cortical neurogenesis in forebrain organoids. Comparison of m6A-mRNA landscapes between mouse and human cortical neurogenesis reveals enrichment of human-specific m6A tagging of transcripts related to brain-disorder risk genes. Our study identifies an epitranscriptomic mechanism in heightened transcriptional coordination during mammalian cortical neurogenesis.


Assuntos
Neurogênese , Prosencéfalo/embriologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Animais , Ciclo Celular , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Organoides/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Estabilidade de RNA
17.
Elife ; 62017 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-28553926

RESUMO

Altered DNA methylation status is associated with human diseases and cancer; however, the underlying molecular mechanisms remain elusive. We previously identified many human transcription factors, including Krüppel-like factor 4 (KLF4), as sequence-specific DNA methylation readers that preferentially recognize methylated CpG (mCpG), here we report the biological function of mCpG-dependent gene regulation by KLF4 in glioblastoma cells. We show that KLF4 promotes cell adhesion, migration, and morphological changes, all of which are abolished by R458A mutation. Surprisingly, 116 genes are directly activated via mCpG-dependent KLF4 binding activity. In-depth mechanistic studies reveal that recruitment of KLF4 to the methylated cis-regulatory elements of these genes result in chromatin remodeling and transcription activation. Our study demonstrates a new paradigm of DNA methylation-mediated gene activation and chromatin remodeling, and provides a general framework to dissect the biological functions of DNA methylation readers and effectors.


Assuntos
Movimento Celular , Metilação de DNA , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Sequências Reguladoras de Ácido Nucleico , Ativação Transcricional , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Humanos , Fator 4 Semelhante a Kruppel , Ligação Proteica
18.
Nat Neurosci ; 20(3): 476-483, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28166220

RESUMO

Neuronal activity-induced gene expression modulates the function and plasticity of the nervous system. It is unknown whether and to what extent neuronal activity may trigger changes in chromatin accessibility, a major mode of epigenetic regulation of gene expression. Here we compared chromatin accessibility landscapes of adult mouse dentate granule neurons in vivo before and after synchronous neuronal activation using an assay for transposase-accessible chromatin using sequencing (ATAC-seq). We found genome-wide changes 1 h after activation, with enrichment of gained-open sites at active enhancer regions and at binding sites for AP1-complex components, including c-Fos. Some changes remained stable for at least 24 h. Functional analysis further implicates a critical role of c-Fos in initiating, but not maintaining, neuronal activity-induced chromatin opening. Our results reveal dynamic changes of chromatin accessibility in adult mammalian brains and suggest an epigenetic mechanism by which transient neuronal activation leads to dynamic changes in gene expression via modifying chromatin accessibility.


Assuntos
Cromatina/metabolismo , Giro Denteado/metabolismo , Neurônios/fisiologia , Animais , Eletrochoque , Epigênese Genética , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Neurônios/metabolismo , Fatores de Tempo , Fator de Transcrição AP-1/metabolismo
19.
J Appl Toxicol ; 36(12): 1579-1590, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27071702

RESUMO

Pyrazinamide (PZA) causes serious hepatotoxicity, but little is known about the exact mechanism by which PZA induced liver injury. The peroxisome proliferator-activated receptors alpha (PPARα) is highly expressed in the liver and modulates the intracellular lipidmetabolism. So far, the role of PPARα in the hepatotoxicity of PZA is unknown. In the present study, we described the hepatotoxic effects of PZA and the role of PPARα and its target genes in the downstream pathway including L-Fabp, Lpl, Cpt-1b, Acaa1, Apo-A1 and Me1 in this process. We found PZA induced the liver lipid metabolism disorder and PPARα expressionwas down-regulated which had a significant inverse correlation with liver injury degree. These changeswere ameliorated by fenofibrate, the co-treatment that acts as a PPARα agonist. In contrast, short-termstarvation significantly aggravated the severity of PZA-induced liver injury. In conclusion, this study demonstrated the critical role played by PPARα in PZA-induced hepatotoxicity and provided a better understanding of the molecular mechanisms underlying PZA-induced liver injury. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Antituberculosos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , PPAR alfa/antagonistas & inibidores , Pirazinamida/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Regulação para Baixo , Feminino , Fenofibrato/administração & dosagem , Fenofibrato/uso terapêutico , Hipolipemiantes/administração & dosagem , Hipolipemiantes/uso terapêutico , Fígado/metabolismo , PPAR alfa/genética , Ratos Wistar
20.
Sci Transl Med ; 8(328): 328ra29, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26936506

RESUMO

Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron, and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. We show that the hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) family of iron-dependent, oxygen-sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in the mouse striatum improved functional recovery after ICH. A low-molecular-weight hydroxyquinoline inhibitor of the HIF-PHD enzymes, adaptaquin, reduced neuronal death and behavioral deficits after ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of activity of the prodeath factor ATF4 rather than activation of an HIF-dependent prosurvival pathway. Together, these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier-permeable inhibitor adaptaquin can improve functional outcomes after ICH in several rodent models.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Encéfalo/patologia , Hemorragias Intracranianas/patologia , Terapia de Alvo Molecular , Neurônios/patologia , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Hemina/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hemorragias Intracranianas/fisiopatologia , Ferro/farmacologia , Quelantes de Ferro/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA