Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 11(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35011592

RESUMO

Long-term exposition to morphine elicits structural and synaptic plasticity in reward-related regions of the brain, playing a critical role in addiction. However, morphine-induced neuroadaptations in the dorsal striatum have been poorly studied despite its key function in drug-related habit learning. Here, we show that prolonged treatment with morphine triggered the retraction of the dendritic arbor and the loss of dendritic spines in the dorsal striatal projection neurons (MSNs). In an attempt to extend previous findings, we also explored whether the dopamine D4 receptor (D4R) could modulate striatal morphine-induced plasticity. The combined treatment of morphine with the D4R agonist PD168,077 produced an expansion of the MSNs dendritic arbors and restored dendritic spine density. At the electrophysiological level, PD168,077 in combination with morphine altered the electrical properties of the MSNs and decreased their excitability. Finally, results from the sustantia nigra showed that PD168,077 counteracted morphine-induced upregulation of µ opioid receptors (MOR) in striatonigral projections and downregulation of G protein-gated inward rectifier K+ channels (GIRK1 and GIRK2) in dopaminergic cells. The present results highlight the key function of D4R modulating morphine-induced plasticity in the dorsal striatum. Thus, D4R could represent a valuable pharmacological target for the safety use of morphine in pain management.


Assuntos
Corpo Estriado/fisiologia , Morfina/farmacologia , Plasticidade Neuronal/fisiologia , Receptores de Dopamina D4/metabolismo , Animais , Benzamidas/farmacologia , Corpo Estriado/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Masculino , Morfina/administração & dosagem , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Piperazinas/farmacologia , Ratos Sprague-Dawley , Receptores de Dopamina D4/agonistas , Receptores Opioides mu/metabolismo
2.
Addict Biol ; 22(5): 1232-1245, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27212105

RESUMO

Morphine is one of the most effective drugs used for pain management, but it is also highly addictive. Morphine elicits acute and long-term adaptive changes at cellular and molecular level in the brain, which play a critical role in the development of tolerance, dependence and addiction. Previous studies indicated that the dopamine D4 receptor (D4 R) activation counteracts morphine-induced adaptive changes of the µ opioid receptor (MOR) signaling in the striosomes of the caudate putamen (CPu), as well as the induction of several Fos family transcription factors. Thus, it has been suggested that D4 R could play an important role avoiding some of the addictive effects of morphine. Here, using different drugs administration paradigms, it is determined that the D4 R agonist PD168,077 prevents morphine-induced activation of the nigrostriatal dopamine pathway and morphological changes of substantia nigra pars compacta (SNc) dopamine neurons, leading to a restoration of dopamine levels and metabolism in the CPu. Results from receptor autoradiography indicate that D4 R activation modulates MOR function in the substantia nigra pars reticulata (SNr) and the striosomes of the CPu, suggesting that these regions are critically involved in the modulation of SNc dopamine neuronal function through a functional D4 R/MOR interaction. In addition, D4 R activation counteracts the rewarding effects of morphine, as well as the development of hyperlocomotion and physical dependence without any effect on its analgesic properties. These results provide a novel role of D4 R agonist as a pharmacological strategy to prevent the adverse effects of morphine in the treatment of pain.


Assuntos
Analgésicos Opioides/farmacologia , Benzamidas/farmacologia , Agonistas de Dopamina/farmacologia , Morfina/farmacologia , Neostriado/efeitos dos fármacos , Piperazinas/farmacologia , Receptores de Dopamina D4/agonistas , Recompensa , Substância Negra/efeitos dos fármacos , Animais , Autorradiografia , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/metabolismo , Tolerância a Medicamentos , Masculino , Neostriado/metabolismo , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Parte Reticular da Substância Negra/efeitos dos fármacos , Parte Reticular da Substância Negra/metabolismo , Putamen/efeitos dos fármacos , Putamen/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D4/metabolismo , Receptores Opioides mu/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Substância Negra/metabolismo
3.
Int J Mol Sci ; 15(5): 8570-90, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24830558

RESUMO

G protein-coupled receptors (GPCRs) oligomerization has emerged as a vital characteristic of receptor structure. Substantial experimental evidence supports the existence of GPCR-GPCR interactions in a coordinated and cooperative manner. However, despite the current development of experimental techniques for large-scale detection of GPCR heteromers, in order to understand their connectivity it is necessary to develop novel tools to study the global heteroreceptor networks. To provide insight into the overall topology of the GPCR heteromers and identify key players, a collective interaction network was constructed. Experimental interaction data for each of the individual human GPCR protomers was obtained manually from the STRING and SCOPUS databases. The interaction data were used to build and analyze the network using Cytoscape software. The network was treated as undirected throughout the study. It is comprised of 156 nodes, 260 edges and has a scale-free topology. Connectivity analysis reveals a significant dominance of intrafamily versus interfamily connections. Most of the receptors within the network are linked to each other by a small number of edges. DRD2, OPRM, ADRB2, AA2AR, AA1R, OPRK, OPRD and GHSR are identified as hubs. In a network representation 10 modules/clusters also appear as a highly interconnected group of nodes. Information on this GPCR network can improve our understanding of molecular integration. GPCR-HetNet has been implemented in Java and is freely available at http://www.iiia.csic.es/~ismel/GPCR-Nets/index.html.


Assuntos
Algoritmos , Receptores Acoplados a Proteínas G/química , Análise por Conglomerados , Bases de Dados de Proteínas , Dimerização , Humanos , Internet , Redes e Vias Metabólicas , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Interface Usuário-Computador
4.
Int J Mol Sci ; 15(1): 1481-98, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24451133

RESUMO

The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine.


Assuntos
Morfina/farmacologia , Putamen/metabolismo , Receptores de Dopamina D4/metabolismo , Receptores Opioides mu/metabolismo , Transdução de Sinais , Adaptação Fisiológica , Animais , Agonistas de Dopamina/farmacologia , Dinorfinas/genética , Dinorfinas/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Masculino , Putamen/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D4/agonistas , Receptores Opioides mu/genética
5.
J Neurosci Res ; 91(12): 1533-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038231

RESUMO

The peptides dynorphin and enkephalin modulate many physiological processes, such as motor activity and the control of mood and motivation. Their expression in the caudate putamen (CPu) is regulated by dopamine and opioid receptors. The current work was designed to explore the early effects of the acute activation of D4 and/or µ opioid receptors by the agonists PD168,077 and morphine, respectively, on the regulation of the expression of these opioid peptides in the rat CPu, on transcription factors linked to them, and on the expression of µ opioid receptors. In situ hybridization experiments showed that acute treatment with morphine (10 mg/kg) decreased both enkephalin and dynorphin mRNA levels in the CPu after 30 min, but PD168,077 (1 mg/kg) did not modify their expression. Coadministration of the two agonists demonstrated that PD168,077 counteracted the morphine-induced changes and even increased enkephalin mRNA levels. The immunohistochemistry studies showed that morphine administration also increased striatal µ opioid receptor immunoreactivity but reduced P-CREB expression, effects that were blocked by the PD168,077-induced activation of D4 receptors. The current results present evidence of functional D4 -µ opioid receptor interactions, with consequences for the opioid peptide mRNA levels in the rat CPu, contributing to the integration of DA and opioid peptide signaling.


Assuntos
Analgésicos Opioides/farmacologia , Morfina/farmacologia , Peptídeos Opioides/biossíntese , Putamen/metabolismo , Receptores de Dopamina D4/metabolismo , Animais , Dinorfinas/biossíntese , Encefalinas/biossíntese , Imuno-Histoquímica , Hibridização In Situ , Masculino , Putamen/efeitos dos fármacos , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo
6.
Brain Res ; 1407: 47-61, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21782156

RESUMO

Acute administration of the dopamine D(4) receptor (D(4)R) agonist PD168,077 induces a down-regulation of the µ opioid receptor (MOR) in the striosomal compartment of the rat caudate putamen (CPu), suggesting a striosomal D(4)R/MOR receptor interaction in line with their high co-distribution in this brain subregion. The present work was designed to explore if a D(4)R/MOR receptor interaction also occurs in the modulation of the expression pattern of several transcription factors in striatal subregions that play a central role in drug addiction. Thus, c-Fos, FosB/ΔFosB and P-CREB immunoreactive profiles were quantified in the rat CPu after either acute or continuous (6-day) administration of morphine and/or PD168,077. Acute and continuous administration of morphine induced different patterns of expression of these transcription factors, effects that were time-course and region dependent and fully blocked by PD168,077 co-administration. Moreover, this effect of the D(4)R agonist was counteracted by the D(4)R antagonist L745,870. Interestingly, at some time-points, combined treatment with morphine and PD168,077 substantially increased c-Fos, FosB/ΔFosB and P-CREB expression. The results of this study give indications for a general antagonistic D(4)R/MOR receptor interaction at the level of transcription factors. The change in the transcription factor expression by D(4)R/MOR interactions in turn suggests a modulation of neuronal activity in the CPu that could be of relevance for drug addiction.


Assuntos
Analgésicos Opioides/farmacologia , Núcleo Caudado/metabolismo , Morfina/farmacologia , Putamen/metabolismo , Receptores de Dopamina D4/efeitos dos fármacos , Fatores de Transcrição/biossíntese , Animais , Autorradiografia , Benzamidas/farmacologia , Núcleo Caudado/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Genes fos/efeitos dos fármacos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Putamen/efeitos dos fármacos , Piridinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D4/agonistas , Receptores de Dopamina D4/antagonistas & inibidores
7.
J Neural Transm (Vienna) ; 117(6): 681-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20387084

RESUMO

The role of the ATP-gated receptor, P2X(7), has been evaluated in the unilateral 6-OHDA rat model of Parkinson's disease using the P2X(7) competitive antagonist A-438079. Nigral P2X(7) immunoreactivity was mainly located in microglia but also in astroglia. A-438079 partially but significantly prevented the 6-OHDA-induced depletion of striatal DA stores. However, this was not associated with a reduction of DA cell loss. Blockade of P2X(7) receptors may represent a novel protective strategy for striatal DA terminals in Parkinson's disease and warrants further future investigation.


Assuntos
Dopamina/metabolismo , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2 , Piridinas/uso terapêutico , Receptores Purinérgicos P2/metabolismo , Tetrazóis/uso terapêutico , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Adrenérgicos/toxicidade , Análise de Variância , Animais , Encéfalo/metabolismo , Contagem de Células/métodos , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Homovanílico/metabolismo , Masculino , Degeneração Neural/complicações , Vias Neurais/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7 , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA