Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PLoS One ; 19(5): e0299668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768244

RESUMO

COVID-19 has spread and developed into a pandemic disease, forcing countries to impose challenging protocols and lockdowns. This study assessed shopping, food consumption behavior, and feelings in Jordan and several Arab countries during the COVID-19 pandemic. A cross-sectional web-based survey among the Middle East population was conducted using an online questionnaire between July and September 2022. Participants were requested to answer a standardized and validated structured questionnaire. Demographic information, shopping behavior information, and mental health data were requested. A total of 542 respondents were included in the study. During COVID-19 quarantine, participants (68.6%) reported decreased shopping frequency and buying more food than usual (37.5%). Cereals and legumes were the primary food types stored by participants (76.9%). Multiple logistic regression revealed the age of the participant as a significant factor affecting storing of food (being ≤ 25 years old (OR = 0.456, p value = 0.038)). 75.7% of female participants eat less frequently in restaurants than usual. In contrast, among males, 48.5% reported that they eat at restaurants less frequently than usual. The country of residency and gender were the significant factors affecting negative feelings and emotions. Participants in countries other than Jordan had a higher negative feeling score (Beta = 0.086, p value = 0.042). Furthermore, females had a higher negative feeling score (Beta = -0.128, p value = 0.003) as the negative feelings score for females was 3.58 (SD = 5.443). On the other hand, it was 2.10 (SD = 5.091) for males. The COVID-19 pandemic has altered Jordanians' attitudes, shopping, and food consumption habits. Although positive behaviors have improved, such as shopping less frequently, eating home-cooked meals, and dining with family, frequent snacking and food storage have increased. Finally, public awareness of shopping and food consumption habits should be promoted.


Assuntos
COVID-19 , Comportamento Alimentar , Estilo de Vida , Humanos , COVID-19/epidemiologia , COVID-19/psicologia , Masculino , Feminino , Estudos Transversais , Adulto , Comportamento Alimentar/psicologia , Pessoa de Meia-Idade , Jordânia/epidemiologia , Pandemias , Inquéritos e Questionários , Adulto Jovem , SARS-CoV-2 , Adolescente
2.
ACS Omega ; 9(19): 20997-21005, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764637

RESUMO

Brucellosis is a bacterial zoonotic disease that requires major attention for both health and financial facilities in many parts of the world including the Mediterranean and the Middle East. The existing gold standard diagnosis relies on the culturing technique, which is costly and time-consuming with a duration of up to 45 days. The Brucella protease biosensor represents a new detection approach that will lead to low-cost point-of-care devices for sensitive Brucella detection. In addition, the described diagnostic device is portable and simple to operate by a nurse or non-skilled clinician making it appropriate for the low-resource setting. In this study, we rely on the total extracellular protease proteolytic activity on specific peptide sequences identified using the FRET assay by high-throughput screening from the library of peptide (96 short peptides such as dipeptides and tripeptides) substrates for Brucella melitensis (B. melitensis). The B. melitensis-specific protease substrate was utilized in the development of the paper-based colorimetric assay. Two specific and highly active dipeptide substrates were identified (FITC-Ahx-K-r-K-Ahx-DABCYL and FITC-Ahx-R-r-K-Ahx-DABCYL). The peptide-magnetic bead nanoprobe sensors developed based on these substrates were able to detect the Brucella with LOD as low as 1.5 × 102 and 1.5 × 103 CFU/mL using K-r dipeptide and R-r dipeptide substrates, respectively, as the recognition element. The samples were tested using this sensor in few minutes. Cross-reactivity studies confirmed that the other proteases extracted from closely related pathogens have no significant effect on the sensor. To the best of our knowledge, this assay is the first assay that can be used with low-cost, rapid, direct, and visual detection of B. melitensis.

3.
RSC Med Chem ; 15(2): 695-703, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38389876

RESUMO

Normally, skeletal muscle accounts for 70-80% of insulin-stimulated glucose uptake in the postprandial hyperglycemia state. Consequently, abnormalities in glucose uptake by skeletal muscle or insulin resistance (IR) are deemed as initial metabolic defects in the pathogenesis of type 2 diabetes mellitus (T2DM). Globally, T2DM is growing in exponential proportion. The majority of T2DM patients are treated with sulfonylureas in combination with other drugs to improve insulin sensitivity. Glycosylated sulfonylureas (sulfonylurea-glucosamine analogues) are modified analogues of sulfonylurea that have been previously reported to possess antidiabetic activity. The aim of this study was to evaluate the impact of glycosylated sulfonylureas on the insulin signalling pathway at the molecular level using L6 skeletal muscle cell (in vitro) and extracted soleus muscle (ex vivo) models. To create an in vitro model, insulin resistance was established utilizing a high insulin-glucose approach in differentiated L6 muscle cells from Rattus norvegicus. Additionally, for the ex vivo model, extracted soleus muscles, adult Sprague-Dawley rats were subjected to a solution containing 25 mmol L-1 glucose and 100 mmol L-1 insulin for 24 hours to induce insulin resistance. After insulin resistance, compounds under investigation and standard medicines (metformin and glimepiride) were tested. The differential expression of PI3K, IRS-1, PKC, AKT2, and GLUT4 genes involved in the insulin signaling pathway was evaluated using qPCR. The evaluated glycosylated sulfonylurea analogues exhibited a significant increase in the gene expression of insulin-dependent pathways both in vitro and ex vivo, confirming the rejuvenation of the impaired insulin signaling pathway genes. Altogether, glycosylated sulfonylurea analogues described in this study represent potential therapeutic anti-diabetic drugs.

4.
ACS Omega ; 8(36): 32877-32883, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720766

RESUMO

The development of a colorimetric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection assay with the WHO published ASSURED criteria is reported, in which the biosensor should have the following characteristics of (i) being affordable for low-income communities, (ii) sensitive, (iii) specific, (iv) user-friendly to be used by non-skilled personnel, (v) rapid and robust, (vi) equipment-free, and (vii) delivered to the end-users as a simple and easy to use point-of-care tool. Early viral infection detection prevents virus spread and controls the epidemic. We herein report the development of a colorimetric assay in which SARS-COV-2 variants can be detected by colorimetric observation of color on the sensing cotton swab surface. Using the developed biosensor assay, it is possible to discriminate between the various SARS-CoV-2 variants with a LOD of 100 ng/mL within 4 min including sample preconcentration and incubation step. The results illustrated the development of a SARS-CoV-2 colorimetric biosensor that can be mass produced, with low-reagent cost, and can be read-out visually in the field by nonskilled personnel.

5.
Heliyon ; 9(6): e17081, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332946

RESUMO

Jordan is rich in the flora of ethnobotanical importance. This scoping review aims to highlight the ethnopharmacological value of Jordanian medicinal plants using the Preferred Reporting Items of Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A total of one hundred twenty-four articles published between 2000 and 2022 obtained from PubMed, EBSCO, and Google Scholar databases were included in this review. These plants own several classes of secondary bioactive metabolites, including alkaloids, flavonoids, phenolics, and terpenes. Jordanian plants exhibited potential therapeutic activity against various tumors, bacterial infections, elevated blood glucose levels, hyperlipidemia, platelets aggregation disorders, and gastrointestinal disorders. Phytochemicals' biological activities depend on their structures, parts used, methods of extraction, and evaluation model. In conclusion, this review highlights the need of researching Jordan's abundant naturally occurring medicinal plants and their phytochemicals as novel lead molecules in drug discovery and development. Studying active phytochemicals for disease treatment will help develop drugs for safe treatment and cure in the future.

6.
PLoS One ; 18(3): e0282705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893145

RESUMO

Minimizing antibiotic resistance is a key motivation strategy in designing and developing new and combination therapy. In this study, a combination of the antibiotics (cefixime, levofloxacin and gentamicin) with Lysobacter enzymogenes (L. enzymogenes) bioactive proteases present in the cell- free supernatant (CFS) have been investigated against the Gram-positive methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA) and the Gram-negative Escherichia coli (E. coli O157:H7). Results indicated that L. enzymogenes CFS had maximum proteolytic activity after 11 days of incubation and higher growth inhibitory properties against MSSA and MRSA compared to E. coli (O157:H7). The combination of L. enzymogenes CFS with cefixime, gentamicin and levofloxacin at sub-MIC levels, has potentiated their bacterial inhibition capacity. Interestingly, combining cefixime with L. enzymogenes CFS restored its antibacterial activity against MRSA. The MTT assay revealed that L. enzymogenes CFS has no significant reduction in human normal skin fibroblast (CCD-1064SK) cell viability. In conclusion, L. enzymogenes bioactive proteases are natural potentiators for antimicrobials with different bacterial targets including cefixime, gentamicin and levofloxacin representing the beginning of a modern and efficient era in the battle against multidrug-resistant pathogens.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Levofloxacino/farmacologia , Peptídeo Hidrolases , Cefixima , Escherichia coli , Virulência , Antibacterianos/farmacologia , Meticilina , Staphylococcus aureus , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana
8.
PLoS One ; 17(12): e0278243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477269

RESUMO

COVID-19 infection is a global pandemic health emergency. This contagious disease was caused by the Severe Acute Respiratory Syndrome Coronavirus­2 (SARS­CoV-2) which is mutating over time. In 2021, the Delta variant became the most dominant transmissible form. During the crisis, human practice and knowledge were critical in the overall efforts to encompass the outbreak. A cross-sectional, web-based approach was conducted among adults in Jordan to quantify knowledge, attitude, and practices towards SARS-CoV-2 (Delta variant). This research was carried out between 15th April and 15th of May 2021. The study questionnaire consisted of four sections including the participant's demographics, knowledge, practices and attitude. Comparative evaluation of responses was accomplished using a scoring system. Respondents who scored above the mean score (60%) on the item measured were categorized as knowledgeable, having a positive attitude, and good practices. Participants were allocated to one of the three groups; medical, non-medical and others (unemployed and housewives). Data collected was analyzed using Statistical Package for Social Sciences (SPSS) version 23.0 software. A variance test to assess the statistical difference between groups was used. Pearson's chi-squared test was applied to compare the variables and identify significant predictors. Of the participants, 308 (66%) were in the age group of 18-25yrs, 392 (84.1%) females, 120 (25.8%) employed and 346 (74.2%) unemployed. The principle source of knowledge was social media (291, 62.4%). Interestingly, participants had adequate overall knowledge. The mean knowledge score was 22.6 (± 0.19), 20.6 (± 0.19), and 21.3 (± 0.18) for the medical, the non-medical and the others group, respectively. Also, participants showed a positive attitude and good practices towards SARS-CoV-2 (Delta variant). The mean practice score for medical, the non-medical and the others groups was 7.35 (± 0.25), 7.38 (± 0.24), 7.35 (± 0.24) and the mean attitude score was 10.8 (± 0.16), 9.4 (± 0.21), 9.5 (± 0.22), respectively. The studied groups generally had good knowledge, positive attitudes and good practices about SARS-CoV-2 (Delta variant). This was expected due to the authorities' successful management of the pandemic and the high educational level of the Jordanian society, bearing in mind the economic and social impact of COVID-19 disease.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Adolescente , Adulto Jovem , Adulto , SARS-CoV-2/genética , COVID-19/epidemiologia , Estudos Transversais , Jordânia/epidemiologia
9.
Biosensors (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421142

RESUMO

An electroanalytical electrode for the detection of albendazole (ABZ) active ingredient in pharmaceutical dosage form and in contaminated animal-derived products was developed using a glassy carbon electrode modified with platinum-palladium nanoparticles. The electro-catalytic performance of the bimetallic-modified glassy carbon electrode was compared with its bare counterpart. Under optimized conditions, the modified electrode revealed two well-resolved anodic peak currents at 1.10 and 1.23 V using differential pulse voltammetry. Pure ABZ, as well as ABZ in spiked foods (milk and chicken), were detected with little interference from the food matrix. This electrode demonstrated high sensitivity and applicability, with a lower limit of detection of 0.08 µmol L-1 in aqueous solution and 10 µmol L-1 in the contaminated ground chicken and 100 µmol L-1 in the contaminated milk sample. The fabricated sensor is low in cost and appropriate for the estimation of albendazole in tablet dosage forms and biological samples, and so can act as a quality control tool in the pharmaceutical and food industry.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Animais , Platina , Carbono , Paládio , Albendazol , Eletrodos , Preparações Farmacêuticas
10.
Chemosphere ; 309(Pt 2): 136724, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36208803

RESUMO

Antibiotics are detected worldwide in the aquatic environment, with continuously rising concentrations. Antibiotics in the environment have the potential to damage ecosystems and contribute to the development of resistance. Whilst a few antibiotics, such as some ß-lactams, are eliminated by effluent treatment, others, such as fluoroquinolones, are not or just partially removed and enter the environment. Therefore, approaches are needed to tackle those problems at the compound level. Benign by design (BbD), an important part of green pharmacy, has the goal to integrate environmental fate and end-of-use considerations at the very beginning, i.e., into the design of active pharmaceutical ingredients. Hence, pharmaceuticals should be designed to be sufficiently active and stable during storage and usage but should degrade after excretion into the environment, so that they cannot cause any adverse effects. Fluoroquinolones (FQs) are important broad-spectrum antibiotics. They are known to be persistent in the environment and to be neither inactivated nor degraded or even mineralized during sewage treatment. The addition of new substituents via amidation, like glucosamine moieties, at the carboxylic group of FQs, led to better antimicrobial activity compared to its parent compounds against various microorganisms. To investigate if the addition of sugar moieties could improve the overall environmental biodegradability of FQs, eight novel quinolone and fluoroquinolone analogs conjugated with 1,3,4,6-Tetra-O-acetyl-ß-d-glucosamine and 2-deoxy-d-glucopyranose have been investigated regarding their ready biodegradability (OECD 301D/F) and their degradation pathways have been analyzed. According to the OECD 301D test, none of the substances could be classified as readily biodegradable. However, the O-acetyl analogs did undergo a partial degradation of the O-acetyl glucosamine moiety, via stepwise deacetylation and the degradation of the whole glucosamine moiety. The degradation resulted in Fluoroquinolone-3-carboxamide derivatives. Those insights could be further used as input for fragment-based design of benign APIs that will degrade once they reached the environment.


Assuntos
Fluoroquinolonas , Quinolonas , Fluoroquinolonas/toxicidade , Glucosamina , Esgotos , Ecossistema , Antibacterianos/farmacologia , Antibacterianos/metabolismo , beta-Lactamas , Açúcares , Preparações Farmacêuticas
11.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956793

RESUMO

Terfezia claveryi (T. claveryi) is used by traditional healers in the Middle East region to treat several diseases, including diabetes. The present study evaluated the total phenolic and investigated the blood-glucose-lowering potential of different aqueous extracts of this selected truffle using in vitro and in vivo models. The phytochemical profile was examined using UPLC-MS. The macerate and the microwave-assisted extract were the richest in phenolic compounds. All T. claveryi extracts exhibited a remarkable α-glucosidase inhibitory effect in vitro, with an IC50 of 2.43, 3.26, 5.18 and 3.31 mg/mL for the aqueous microwave-assisted extract macerate, infusion and decoction, respectively. On the other hand, in the high-fat diet alloxan-induced diabetic mice model, all tested crude aqueous extracts exhibited a significant antihyperglycemic activity (p < 0.05). Four hours after the administration of the 250 mg/kg dose, the macerate was able to induce a 29.4% blood-glucose-lowering effect compared to a 24.8% reduction induced by the infusion, which was sustained for a further two hours. The hypoglycemic effect (29.3% and 32.4%) was also recorded six hours after the administration of the single dose 500 mg/kg of the macerate and the infusion, respectively. Truffle extracts exhibited antidiabetic activity both in vitro and in vivo, providing a rationale for the traditional use as a natural hypoglycemic.


Assuntos
Diabetes Mellitus Experimental , Hipoglicemiantes , Animais , Ascomicetos , Glicemia , Cromatografia Líquida , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Camundongos , Fenóis/análise , Extratos Vegetais/química , Espectrometria de Massas em Tandem
12.
ACS Omega ; 7(21): 17555-17562, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664618

RESUMO

Despite progress in fighting infectious diseases, human pathogenesis and death caused by infectious diseases remain relatively high worldwide exceeding that of cancer and cardiovascular diseases. Human adenovirus (HAdV) infects cells of the upper respiratory tract causing flu-like symptoms that are accompanied by pain and inflammation. Diagnosis of HAdV is commonly achieved by conventional methods such as viral cultures, immunoassays, and polymerase chain reaction (PCR) techniques. However, there are a variety of problems with conventional methods including slow isolation and propagation, inhibition by neutralizing antibodies, low sensitivity of immunoassays, and the diversity of HAdV strains for the PCR technique. Herein, we report the development and evaluation of a novel, simple, and reliable nanobased immunosensing technique for the rapid detection of human adenoviruses (HAdVs) that cause eye infections. This rapid and low-cost assay can be used for screening and quantitative tests with a detection limit of 102 pfu/mL in less than 2 min. The sensing platform is based on a sandwich assay that can detect HAdVs visually by a color change. Sensor specificity was demonstrated using other common viral antigens, including Flu A, Flu B, coronavirus (COV), and Middle East respiratory syndrome coronavirus (MERS COV). This cotton-based testing device potentially exhibits many of the desired characteristics of a suitable point-of-care and portable test, which can be carried out by nurses or clinicians especially for low-resource settings.

13.
Biosensors (Basel) ; 12(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35448292

RESUMO

Simple, timely, and precise detection of SARS-CoV-2 in clinical samples and contaminated surfaces aids in lowering attendant morbidity/mortality related to this infectious virus. Currently applied diagnostic techniques depend on a timely laboratory report following PCR testing. However, the application of these tests is associated with inherent shortcomings due to the need for trained personnel, long-time centralized laboratories, and expensive instruments. Therefore, there is an interest in developing biosensing diagnostic frontiers that can help in eliminating these shortcomings with a relatively economical, easy-to-use, well-timed, precise and sensitive technology. This study reports the development of fabricated Q-tips designed to qualitatively and semi-quantitatively detect SARS-CoV-2 in clinical samples and contaminated non-absorbable surfaces. This colorimetric sensor is engineered to sandwich SARS-CoV-2 spike protein between the lactoferrin general capturing agent and the complementary ACE2-labeled receptor. The ACE2 receptor is decorated with an orange-colored polymeric nanoparticle to generate an optical visual signal upon pairing with the SARS-CoV-2 spike protein. This colorimetric change of the Q-tip testing zone from white to orange confirms a positive result. The visual detection limit of the COVID-19 engineered colorimetric Q-tip sensor was 100 pfu/mL within a relatively short turnaround time of 5 min. The linear working range of quantitation was 103-108 pfu/mL. The engineered sensor selectively targeted SARS-CoV-2 spike protein and did not bind to another coronavirus such as MERS-CoV, Flu A, or Flu B present on the contaminated surface. This novel detection tool is relatively cheap to produce and suitable for onsite detection of COVID-19 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , COVID-19/diagnóstico , Humanos , Glicoproteína da Espícula de Coronavírus/análise
14.
Molecules ; 27(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35268759

RESUMO

Development of novel derivatives to rein in and fight bacteria have never been more demanding, as microbial resistance strains are alarmingly increasing. A multitude of new fluoroquinolones derivatives with an improved spectrum of activity and/or enhanced pharmacokinetics parameters have been widely explored. Reporting novel antimicrobial agents entails comparing their potential activity to their parent drugs; hence, parent fluoroquinolones have been used in research as positive controls. Given that these fluoroquinolones possess variable activities according to their generation, it is necessary to include parent compounds and market available antibiotics of the same class when investigating antimicrobial activity. Herein, we provide a detailed guide on the in vitro biological activity of fluoroquinolones based on experimental results published in the last years. This work permits researchers to compare and analyze potential fluoroquinolones as positive control agents and to evaluate changes occurring in their activities. More importantly, the selection of fluoroquinolones as positive controls by medicinal chemists when investigating novel FQs analogs must be correlated to the laboratory pathogen inquest for reliable results.


Assuntos
Fluoroquinolonas , Neoplasias , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/metabolismo , Linhagem Celular , Ciprofloxacina , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Neoplasias/tratamento farmacológico
15.
Mini Rev Med Chem ; 22(4): 617-628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33888048

RESUMO

Coronaviruses are RNA-infective viruses that could be considered principal players in universal high-profile outbreaks, namely the Severe Acute Respiratory Syndrome (SARS, 2002-2003), the Middle East Respiratory Syndrome (MERS, 2012) and the continuing novel coronavirus disease (COVID-19, 2019) pandemic. RNA coronaviruses infections raise public health concerns with infections' severity ranging from serious pandemics and highly contagious infections to common influenza episodes. With a wide consensus concerning the seminal role of early detection of the infectious agent on the clinical prognosis, recent technological endeavors have facilitated the rapid, sensitive and specific diagnosis of viral infections. Given that the burst of confirmed cases of the novel coronavirus disease 2019 (COVID-19) are climbing steeply, and we are amid this pandemic, this work will center at the respiratory RNA-viruses outbreaks, including the three coronaviruses-related pandemics, emphasizing on the approved diagnostic approaches, outlining therapeutic clinical trials as well as vaccine candidates. Based on the accumulated data and knowledge on the previous RNA-virus outbreaks, this review aspires to link the current intervention measures against SARS-CoV-2 infection with the previous interventions and to provide a roadmap for any possible future measures.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , COVID-19/diagnóstico , COVID-19/epidemiologia , Testes Diagnósticos de Rotina , Surtos de Doenças , Humanos , Pandemias/prevenção & controle , RNA , SARS-CoV-2 , Vacinação
16.
Molecules ; 26(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299610

RESUMO

Recently, significant advances in modern medicine and therapeutic agents have been achieved. However, the search for effective antidiabetic drugs is continuous and challenging. Over the past decades, there has been an increasing body of literature related to the effects of secondary metabolites from botanical sources on diabetes. Plants-derived metabolites including alkaloids, phenols, anthocyanins, flavonoids, stilbenoids, saponins, tannins, polysaccharides, coumarins, and terpenes can target cellular and molecular mechanisms involved in carbohydrate metabolism. In addition, they can grant protection to pancreatic beta cells from damage, repairing abnormal insulin signaling, minimizing oxidative stress and inflammation, activating AMP-activated protein kinase (AMPK), and inhibiting carbohydrate digestion and absorption. Studies have highlighted many bioactive naturally occurring plants' secondary metabolites as candidates against diabetes. This review summarizes the current knowledge compiled from the latest studies published during the past decade on the mechanism-based action of plants-derived secondary metabolites that can target various metabolic pathways in humans against diabetes. It is worth mentioning that the compiled data in this review will provide a guide for researchers in the field, to develop candidates into environment-friendly effective, yet safe antidiabetics.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Compostos Fitoquímicos/uso terapêutico , Animais , Glicemia/análise , Diabetes Mellitus/sangue , Diabetes Mellitus/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Plantas/química , Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Analyst ; 146(11): 3568-3577, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33913455

RESUMO

This study demonstrates the development of a sensitive, specific, and quantitative peptide-based nanoprobe prototype assay for the detection of Legionellaceae in a simple way and in a short time. In this work, proteases present in the culture supernatants of Legionella spp. were used as a biomarker. Fluorogenic peptide substrates, specific to Legionella strains culture supernatant proteases, were identified. Peptidases produced a significant increase in the fluorescence intensity following the cleavage of the dipeptide fluorogenic substrates. The specific substrates were identified and coupled with carboxyl-terminated nano-magnetic particles (NMPs). On the other hand, the C-terminal was conjugated with the cysteine residue to covalently integrate with a gold sensing platform via the Au-S linkage. Four different sensors were fabricated from the four specific substrates, which were treated with the protesase of six different species of Legionella. In the presence of specific protease, the peptide sequence is digested and the magnetic nanobeads moved out of the gold surface, resulting in the apparence of gold color. One of the nanoprobes sensitivity detects as low as 60 CFU mL-1 of Legionella anisa, Legionella micdadei, and Fluoribacter dumoffii. The cross-reactivity of the sensors was tested using other closely associated bacterial species and no significant cross-reactivity of the sensors was found. It is envisaged that this assay could be useful for screening purposes or might be supportive for the fast and easy detection of Legionella protease activity for water monitoring purposes.


Assuntos
Técnicas Biossensoriais , Legionellaceae , Legionella , Peptídeos
18.
Talanta ; 225: 121946, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592701

RESUMO

The timely diagnosis of MRSA in clinical samples helps to reduce the attendant morbidity/mortality associated with infection due to the organism. The early institution of appropriate therapy or deployment of infection control protocols are dependent on a timely report from the microbiology laboratory. Various assays currently used in the identification of MRSA are associated with inherent shortcomings, thus there is a need to explore newer diagnostic frontiers that can eliminate some of these short comings at a relatively cheap, timely, specific and sensitive manner. We present in this study a MRSA specific optical immunosensor to detect the presence of the pathogen on contaminated surface using control and patient strains. Results revealed a detection limits of 103 CFU mL-1 upon visual observation, and 29 CFU mL-1 as determined by the linear regression equation, following the use of ImageJ to quantify activated cotton swab color intensity. The specificity of the sensor was examined by blind testing a panel of non-MRSA bacteria (E. coli, S. aureus and S. epidermis). Negative visual read-out was observed for all tested non-specific bacteria except for MRSA. Assay takes an average of 5 min and presents a powerful point-of-care diagnostic platform for the detection of MRSA.


Assuntos
Técnicas Biossensoriais , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Colorimetria , Escherichia coli , Humanos , Imunoensaio , Sensibilidade e Especificidade , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus
19.
Biosens Bioelectron ; 176: 112910, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33395571

RESUMO

There is mounting evidence that contaminated hospital environment plays a crucial role in the transmission of nosocomial pathogens such as MRSA. The institution of infection control protocols is predicated on the early laboratory detection of the pathogen from relevant samples. Processing of environmental samples for the presence of bacterial contaminants in the clinical environment is poorly standardized when compared with analysis of clinical samples. The various laboratory methods available for processing environmental samples are difficult to standardized and most require a long turnaround time before results are available. In this study, we present a report of the performance of a novel pathogen aptasensor swab designed to qualitatively and quantitatively detect MRSA, on contaminated non-absorbable surfaces. The visual detection limit of the MRSA aptasensor swab was less than 100 CFU/ml and theoretically using a standard curve, was 2 CFU/ml. A relatively short turnaround time of 5 min was established for the assay while the linear range of quantitation was 102-105 CFU/ml. Engineered aptasensor targets MRSA selectively and binds to none of the other tested bacterial pathogen, on a multi-contaminated surface. This novel detection tool was easy to use and relatively cheap to produce.


Assuntos
Técnicas Biossensoriais , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Infecções Estafilocócicas/diagnóstico
20.
Talanta ; 221: 121468, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076087

RESUMO

The flu viruses are respiratory pathogens which, according to the World Health Organization (WHO), infect 5-10% of the world population resulting in 3-5 million cases of severe illness and 290,000 to 650,000 annual deaths. Early diagnosis and therapeutic intervention can ameliorate symptoms of infection and reduce mortality. The conventional diagnosis of viral infections, including flu viruses, has evolved over the years with diverse approaches, however, there are inherent short comings associated with these testing. There is an urgent need for rapid and low-cost diagnostic assays, due to the enormous annual burden of influenza diseases and its associated mortality. In this study, novel, low cost and easy to use colorimetric flu virus biosensor assay was developed. The sandwich assay format was utilized using antibodies immobilized onto cotton swabs, for the rapid detection of flu A and B viruses. These swabs serve as sample collection, analytes pre-concentration as well as sensing tool. The proof of concept was established for this assay in buffer and mucus samples. The limit of detection (LOD) of the colorimetric assay was 0.04 ng mL-1 for Flu A and Flu B respectively and with linear dynamic range between 0.04 ng ml-1 to 40 ng ml for both viruses in mucous samples. The assay can be performed at the patient's bed side by minimally skilled hospital personnel without the need for instrumentation. Cross-reactivity assays testing was done using Flu viruses specific activated swabs reacted with other common respiratory viral pathogens' antigen, in order to assess the specificity of the swabs.


Assuntos
Herpesvirus Cercopitecino 1 , Vírus da Influenza A , Influenza Humana , Colorimetria , Humanos , Vírus da Influenza B , Influenza Humana/diagnóstico , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA