Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645898

RESUMO

Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify the molecular networks that underpin the sex-associated risk of AD. Recent efforts have identified PIN1 as a key regulator of tau phosphorylation signaling pathway. Pin1 is the only gene, to date, that when deleted can cause both tau and Aß-related pathologies in an age-dependent manner. We analyzed multiple brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels, in an aging and AD cohort, which revealed reduced PIN1 levels driven by females. Then, we validated this observation in an independent dataset (ROS/MAP) which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function, in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again, driven predominantly by female subjects. Our results show that while both male and female AD patients show decreased PIN1 expression, changes occur before the onset of clinical symptoms of AD in females and correlate to early events associated with AD risk (e.g., synaptic dysfunction). These changes are specific to neurons, and may be a potential prognostic marker to assess AD risk in the aging population and even more so in AD females with increased risk of AD.

2.
Virology ; 580: 98-111, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36801670

RESUMO

Bats (order Chiroptera) are some of the most abundant mammals on earth and their species ecology strongly influences zoonotic potential. While substantial research has been conducted on bat-associated viruses, particularly on those that can cause disease in humans and/or livestock, globally, limited research has focused on endemic bats in the USA. The southwest region of the US is of particular interest because of its high diversity of bat species. We identified 39 single-stranded DNA virus genomes in the feces of Mexican free-tailed bats (Tadarida brasiliensis) sampled in the Rucker Canyon (Chiricahua Mountains) of southeast Arizona (USA). Twenty-eight of these belong to the virus families Circoviridae (n = 6), Genomoviridae (n = 17), and Microviridae (n = 5). Eleven viruses cluster with other unclassified cressdnaviruses. Most of the viruses identified represent new species. Further research on identification of novel bat-associated cressdnaviruses and microviruses is needed to provide greater insights regarding their co-evolution and ecology relative to bats.


Assuntos
Quirópteros , Animais , Humanos , Arizona , Vírus de DNA , Genoma Viral , Fezes , DNA
3.
Arch Virol ; 167(12): 2771-2775, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36045303

RESUMO

Bats harbour a diverse array of viruses, some of which are zoonotic, and are one of the most speciose groups of mammals on earth. As part of an ongoing bat-associated viral diversity research project, we identified three cycloviruses (family Circoviridae) in fecal samples of silver-haired bats (Lasionycteris noctivagans) caught in Cave Creek Canyon of Arizona (USA). Two of the three identified genomes represent two new species in the genus Cyclovirus. Cycloviruses have been found in a wide range of environments and hosts; however, little is known about their biology. These new genomes of cycloviruses are the first from silver-haired bats, adding to the broader knowledge of cyclovirus diversity. With continuing studies, it is likely that additional viruses of the family Circoviridae will be identified in Arizona bat populations.


Assuntos
Quirópteros , Circoviridae , Animais , Fezes , Arizona
4.
Viruses ; 12(9)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947826

RESUMO

There is growing interest in uncovering the viral diversity present in wild animal species. The remote Antarctic region is home to a wealth of uncovered microbial diversity, some of which is associated with its megafauna, including penguin species, the dominant avian biota. Penguins interface with a number of other biota in their roles as marine mesopredators and several species overlap in their ranges and habitats. To characterize the circular single-stranded viruses related to those in the phylum Cressdnaviricota from these environmental sentinel species, cloacal swabs (n = 95) were obtained from King Penguins in South Georgia, and congeneric Adélie Penguins, Chinstrap Penguins, and Gentoo Penguins across the South Shetland Islands and Antarctic Peninsula. Using a combination of high-throughput sequencing, abutting primers-based PCR recovery of circular genomic elements, cloning, and Sanger sequencing, we detected 97 novel sequences comprising 40 ssDNA viral genomes and 57 viral-like circular molecules from 45 individual penguins. We present their detection patterns, with Chinstrap Penguins harboring the highest number of new sequences. The novel Antarctic viruses identified appear to be host-specific, while one circular molecule was shared between sympatric Chinstrap and Gentoo Penguins. We also report viral genotype sharing between three adult-chick pairs, one in each Pygoscelid species. Sequence similarity network approaches coupled with Maximum likelihood phylogenies of the clusters indicate the 40 novel viral genomes do not fall within any known viral families and likely fall within the recently established phylum Cressdnaviricota based on their replication-associated protein sequences. Similarly, 83 capsid protein sequences encoded by the viruses or viral-like circular molecules identified in this study do not cluster with any of those encoded by classified viral groups. Further research is warranted to expand knowledge of the Antarctic virome and would help elucidate the importance of viral-like molecules in vertebrate host evolution.


Assuntos
Filogenia , Spheniscidae/virologia , Vírus/classificação , Vírus/isolamento & purificação , Animais , Regiões Antárticas , Proteínas do Capsídeo/genética , Genoma Viral , Georgia , Sequenciamento de Nucleotídeos em Larga Escala , Ilhas , Vírus/genética
5.
Ecol Lett ; 23(8): 1189-1200, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32436365

RESUMO

Many plant water use models predict leaves maximize carbon assimilation while minimizing water loss via transpiration. Alternate scenarios may occur at high temperature, including heat avoidance, where leaves increase water loss to evaporatively cool regardless of carbon uptake; or heat failure, where leaves non-adaptively lose water also regardless of carbon uptake. We hypothesized that these alternative scenarios are common in species exposed to hot environments, with heat avoidance more common in species with high construction cost leaves. Diurnal measurements of leaf temperature and gas exchange for 11 Sonoran Desert species revealed that 37% of these species increased transpiration in the absence of increased carbon uptake. High leaf mass per area partially predicted this behaviour (r2  = 0.39). These data are consistent with heat avoidance and heat failure, but failure is less likely given the ecological dominance of the focal species. These behaviours are not yet captured in any extant plant water use model.


Assuntos
Calor Extremo , Água , Fotossíntese , Folhas de Planta , Transpiração Vegetal , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA