Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7720, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173327

RESUMO

Computer-assisted diagnosis (CAD) algorithms have shown its usefulness for the identification of pulmonary nodules in chest x-rays, but its capability to diagnose lung cancer (LC) is unknown. A CAD algorithm for the identification of pulmonary nodules was created and used on a retrospective cohort of patients with x-rays performed in 2008 and not examined by a radiologist when obtained. X-rays were sorted according to the probability of pulmonary nodule, read by a radiologist and the evolution for the following three years was assessed. The CAD algorithm sorted 20,303 x-rays and defined four subgroups with 250 images each (percentiles ≥ 98, 66, 33 and 0). Fifty-eight pulmonary nodules were identified in the ≥ 98 percentile (23,2%), while only 64 were found in lower percentiles (8,5%) (p < 0.001). A pulmonary nodule was confirmed by the radiologist in 39 out of 173 patients in the high-probability group who had follow-up information (22.5%), and in 5 of them a LC was diagnosed with a delay of 11 months (12.8%). In one quarter of the chest x-rays considered as high-probability for pulmonary nodule by a CAD algorithm, the finding is confirmed and corresponds to an undiagnosed LC in one tenth of the cases.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Raios X , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Sensibilidade e Especificidade , Neoplasias Pulmonares/diagnóstico por imagem , Diagnóstico por Computador/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem
2.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679627

RESUMO

(1) Background: Duchenne (DMD) is a rare neuromuscular disease that progressively weakens muscles, which severely impairs gait capacity. The Six Minute-Walk Test (6MWT), which is commonly used to evaluate and monitor the disease's evolution, presents significant variability due to extrinsic factors such as patient motivation, fatigue, and learning effects. Therefore, there is a clear need for the establishment of precise clinical endpoints to measure patient mobility. (2) Methods: A novel score (6M+ and 2M+) is proposed, which is derived from the use of a new portable monitoring system capable of carrying out a complete gait analysis. The system includes several biomechanical sensors: a heart rate band, inertial measurement units, electromyography shorts, and plantar pressure insoles. The scores were obtained by processing the sensor signals and via gaussian-mixture clustering. (3) Results: The 6M+ and 2M+ scores were evaluated against the North Star Ambulatory Assessment (NSAA), the gold-standard for measuring DMD, and six- and two-minute distances. The 6M+ and 2M+ tests led to superior distances when tested against the NSAA. The 6M+ test and the 2M+ test in particular were the most correlated with age, suggesting that these scores better characterize the gait regressions in DMD. Additionally, the 2M+ test demonstrated an accuracy and stability similar to the 6M+ test. (4) Conclusions: The novel monitoring system described herein exhibited good usability with respect to functional testing in a clinical environment and demonstrated an improvement in the objectivity and reliability of monitoring the evolution of neuromuscular diseases.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Fenômenos Biomecânicos , Reprodutibilidade dos Testes , Caminhada , Progressão da Doença
3.
J Clin Med ; 10(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34640372

RESUMO

Currently, there is no therapy targeting septic cardiomyopathy (SC), a key contributor to organ dysfunction in sepsis. In this study, we used a machine learning (ML) pipeline to explore transcriptomic, proteomic, and metabolomic data from patients with septic shock, and prospectively collected measurements of high-sensitive cardiac troponin and echocardiography. The purposes of the study were to suggest an exploratory methodology to identify and characterise the multiOMICs profile of (i) myocardial injury in patients with septic shock, and of (ii) cardiac dysfunction in patients with myocardial injury. The study included 27 adult patients admitted for septic shock. Peripheral blood samples for OMICS analysis and measurements of high-sensitive cardiac troponin T (hscTnT) were collected at two time points during the ICU stay. A ML-based study was designed and implemented to untangle the relations among the OMICS domains and the aforesaid biomarkers. The resulting ML pipeline consisted of two main experimental phases: recursive feature selection (FS) assessing the stability of biomarkers, and classification to characterise the multiOMICS profile of the target biomarkers. The application of a ML pipeline to circulate OMICS data in patients with septic shock has the potential to predict the risk of myocardial injury and the risk of cardiac dysfunction.

4.
Front Digit Health ; 2: 545949, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34713033

RESUMO

In the context of the fourth revolution in healthcare technologies, leveraging monitoring and personalization across different domains becomes a key factor for providing useful services to maintain and promote well-being. This is even more crucial for older people, with aging being a complex multi-dimensional and multi-factorial process which can lead to frailty. The NESTORE project was recently funded by the EU Commission with the aim of supporting healthy older people to sustain their well-being and capacity to live independently. It is based on a multi-dimensional model of the healthy aging process that covers physical activity, nutrition, cognition, and social activity. NESTORE is based on the paradigm of the human-in-the-loop cyber-physical system that, exploiting the availability of Internet of Things technologies combined with analytics in the cloud, provides a virtual coaching system to support healthy aging. This work describes the design of the NESTORE methodology and its IoT architecture. We first model the end-user under several domains, then we present the NESTORE system that, analyzing relevant key-markers, provides coaching activities and personalized feedback to the user. Finally, we describe the validation strategy to assess the effectiveness of NESTORE as a coaching platform for healthy aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA