Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Commun ; 15(1): 7386, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191772

RESUMO

Germline pathogenic TP53 variants predispose individuals to a high lifetime risk of developing multiple cancers and are the hallmark feature of Li-Fraumeni syndrome (LFS). Our group has previously shown that LFS patients harbor shorter plasma cell-free DNA fragmentation; independent of cancer status. To understand the functional underpinning of cfDNA fragmentation in LFS, we conducted a fragmentomic analysis of 199 cfDNA samples from 82 TP53 mutation carriers and 30 healthy TP53-wildtype controls. We find that LFS individuals exhibit an increased prevalence of A/T nucleotides at fragment ends, dysregulated nucleosome positioning at p53 binding sites, and loci-specific changes in chromatin accessibility at development-associated transcription factor binding sites and at cancer-associated open chromatin regions. Machine learning classification resulted in robust differentiation between TP53 mutant versus wildtype cfDNA samples (AUC-ROC = 0.710-1.000) and intra-patient longitudinal analysis of ctDNA fragmentation signal enabled early cancer detection. These results suggest that cfDNA fragmentation may be a useful diagnostic tool in LFS patients and provides an important baseline for cancer early detection.


Assuntos
Ácidos Nucleicos Livres , Fragmentação do DNA , Mutação em Linhagem Germinativa , Síndrome de Li-Fraumeni , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Masculino , Feminino , Síndrome de Li-Fraumeni/genética , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/sangue , Adulto , Adulto Jovem , Pessoa de Meia-Idade , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Adolescente , Neoplasias/genética , Neoplasias/patologia , Cromatina/genética , Cromatina/metabolismo , Aprendizado de Máquina , Heterozigoto , Criança , Nucleossomos/metabolismo , Nucleossomos/genética , Detecção Precoce de Câncer
2.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38979218

RESUMO

Background: Carotid atherosclerosis is orchestrated by cell-cell communication that drives progression along a clinical continuum (asymptomatic to symptomatic). Extracellular vesicles (EVs) are cell-derived nanoparticles representing a new paradigm in cellular communication. Little is known about their biological cargo, cellular origin/destination, and functional roles in human atherosclerotic plaque. Methods: EVs were enriched via size exclusion chromatography from human carotid endarterectomy samples dissected into paired plaque and marginal zones (symptomatic n=16, asymptomatic n=13). EV cargos were assessed via whole transcriptome miRNA sequencing and mass spectrometry-based proteomics. EV multi-omics were integrated with bulk and single cell RNA-sequencing (scRNA-seq) datasets to predict EV cellular origin and ligand-receptor interactions, and multi-modal biological network integration of EV-cargo was completed. EV functional impact was assessed with endothelial angiogenesis assays. Results: Carotid plaques contained more EVs than adjacent marginal zones, with differential enrichment for EV-miRNAs and EV-proteins in key atherogenic pathways. EV cellular origin analysis suggested that tissue EV signatures originated from endothelial cells (EC), smooth muscle cells (SMC), and immune cells. Integrated tissue vesiculomics and scRNA-seq indicated complex EV-vascular cell communication that changed with disease progression and plaque vulnerability (i.e., symptomatic disease). Plaques from symptomatic patients, but not asymptomatic patients, were characterized by increased involvement of endothelial pathways and more complex ligand-receptor interactions, relative to their marginal zones. Plaque-EVs were predicted to mediate communication with ECs. Pathway enrichment analysis delineated an endothelial signature with roles in angiogenesis and neovascularization - well-known indices of plaque instability. This was validated functionally, wherein human carotid symptomatic plaque EVs induced sprouting angiogenesis in comparison to their matched marginal zones. Conclusion: Our findings indicate that EVs may drive dynamic changes in plaques through EV- vascular cell communication and effector functions that typify vulnerability to rupture, precipitating symptomatic disease. The discovery of endothelial-directed angiogenic processes mediated by EVs creates new therapeutic avenues for atherosclerosis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38692744

RESUMO

Approximately 8.5%-16.2% of childhood cancers are associated with a pathogenic/likely pathogenic germline variant-a prevalence that is likely to rise with improvements in phenotype recognition, sequencing, and variant validation. One highly informative, classical hereditary cancer predisposition syndrome is Li-Fraumeni syndrome (LFS), associated with germline variants in the TP53 tumor suppressor gene, and a >90% cumulative lifetime cancer risk. In seeking to improve outcomes for young LFS patients, we must improve the specificity and sensitivity of existing cancer surveillance programs and explore how to complement early detection strategies with pharmacology-based risk-reduction interventions. Here, we describe novel precision screening technologies and clinical strategies for cancer risk reduction. In particular, we summarize the biomarkers for early diagnosis and risk stratification of LFS patients from birth, noninvasive and machine learning-based cancer screening, and drugs that have shown the potential to be repurposed for cancer prevention.

4.
Nat Commun ; 15(1): 1887, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424096

RESUMO

While it is common to monitor deployed clinical artificial intelligence (AI) models for performance degradation, it is less common for the input data to be monitored for data drift - systemic changes to input distributions. However, when real-time evaluation may not be practical (eg., labeling costs) or when gold-labels are automatically generated, we argue that tracking data drift becomes a vital addition for AI deployments. In this work, we perform empirical experiments on real-world medical imaging to evaluate three data drift detection methods' ability to detect data drift caused (a) naturally (emergence of COVID-19 in X-rays) and (b) synthetically. We find that monitoring performance alone is not a good proxy for detecting data drift and that drift-detection heavily depends on sample size and patient features. Our work discusses the need and utility of data drift detection in various scenarios and highlights gaps in knowledge for the practical application of existing methods.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , Diagnóstico por Imagem , COVID-19/diagnóstico por imagem , Radiografia
5.
Cancer Discov ; 14(1): 104-119, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37874259

RESUMO

People with Li-Fraumeni syndrome (LFS) harbor a germline pathogenic variant in the TP53 tumor suppressor gene, face a near 100% lifetime risk of cancer, and routinely undergo intensive surveillance protocols. Liquid biopsy has become an attractive tool for a range of clinical applications, including early cancer detection. Here, we provide a proof-of-principle for a multimodal liquid biopsy assay that integrates a targeted gene panel, shallow whole-genome, and cell-free methylated DNA immunoprecipitation sequencing for the early detection of cancer in a longitudinal cohort of 89 LFS patients. Multimodal analysis increased our detection rate in patients with an active cancer diagnosis over uni-modal analysis and was able to detect cancer-associated signal(s) in carriers prior to diagnosis with conventional screening (positive predictive value = 67.6%, negative predictive value = 96.5%). Although adoption of liquid biopsy into current surveillance will require further clinical validation, this study provides a framework for individuals with LFS. SIGNIFICANCE: By utilizing an integrated cell-free DNA approach, liquid biopsy shows earlier detection of cancer in patients with LFS compared with current clinical surveillance methods such as imaging. Liquid biopsy provides improved accessibility and sensitivity, complementing current clinical surveillance methods to provide better care for these patients. See related commentary by Latham et al., p. 23. This article is featured in Selected Articles from This Issue, p. 5.


Assuntos
Ácidos Nucleicos Livres , Síndrome de Li-Fraumeni , Humanos , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patologia , Proteína Supressora de Tumor p53/genética , Detecção Precoce de Câncer , Ácidos Nucleicos Livres/genética , Genes p53 , Mutação em Linhagem Germinativa , Predisposição Genética para Doença
6.
Cancer Res Commun ; 3(5): 738-754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37377903

RESUMO

Li-Fraumeni syndrome (LFS) is an autosomal dominant cancer-predisposition disorder. Approximately 70% of individuals who fit the clinical definition of LFS harbor a pathogenic germline variant in the TP53 tumor suppressor gene. However, the remaining 30% of patients lack a TP53 variant and even among variant TP53 carriers, approximately 20% remain cancer-free. Understanding the variable cancer penetrance and phenotypic variability in LFS is critical to developing rational approaches to accurate, early tumor detection and risk-reduction strategies. We leveraged family-based whole-genome sequencing and DNA methylation to evaluate the germline genomes of a large, multi-institutional cohort of patients with LFS (n = 396) with variant (n = 374) or wildtype TP53 (n = 22). We identified alternative cancer-associated genetic aberrations in 8/14 wildtype TP53 carriers who developed cancer. Among variant TP53 carriers, 19/49 who developed cancer harbored a pathogenic variant in another cancer gene. Modifier variants in the WNT signaling pathway were associated with decreased cancer incidence. Furthermore, we leveraged the noncoding genome and methylome to identify inherited epimutations in genes including ASXL1, ETV6, and LEF1 that confer increased cancer risk. Using these epimutations, we built a machine learning model that can predict cancer risk in patients with LFS with an area under the receiver operator characteristic curve (AUROC) of 0.725 (0.633-0.810). Significance: Our study clarifies the genomic basis for the phenotypic variability in LFS and highlights the immense benefits of expanding genetic and epigenetic testing of patients with LFS beyond TP53. More broadly, it necessitates the dissociation of hereditary cancer syndromes as single gene disorders and emphasizes the importance of understanding these diseases in a holistic manner as opposed to through the lens of a single gene.


Assuntos
Síndrome de Li-Fraumeni , Humanos , Síndrome de Li-Fraumeni/genética , Proteína Supressora de Tumor p53/genética , Predisposição Genética para Doença/genética , Genes p53 , Mutação em Linhagem Germinativa/genética
7.
Nat Commun ; 14(1): 77, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604421

RESUMO

Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome associated with germline TP53 pathogenic variants. Here, we perform whole-genome sequence (WGS) analysis of tumors from 22 patients with TP53 germline pathogenic variants. We observe somatic mutations affecting Wnt, PI3K/AKT signaling, epigenetic modifiers and homologous recombination genes as well as mutational signatures associated with prior chemotherapy. We identify near-ubiquitous early loss of heterozygosity of TP53, with gain of the mutant allele. This occurs earlier in these tumors compared to tumors with somatic TP53 mutations, suggesting the timing of this mark may distinguish germline from somatic TP53 mutations. Phylogenetic trees of tumor evolution, reconstructed from bulk and multi-region WGS, reveal that LFS tumors exhibit comparatively limited heterogeneity. Overall, our study delineates early copy number gains of mutant TP53 as a characteristic mutational process in LFS tumorigenesis, likely arising years prior to tumor diagnosis.


Assuntos
Síndrome de Li-Fraumeni , Síndromes Neoplásicas Hereditárias , Humanos , Proteína Supressora de Tumor p53/genética , Predisposição Genética para Doença , Variações do Número de Cópias de DNA/genética , Fosfatidilinositol 3-Quinases/genética , Filogenia , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Mutação em Linhagem Germinativa/genética , Mutação
8.
Artigo em Inglês | MEDLINE | ID: mdl-34095712

RESUMO

Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue sarcoma and accounts for 3% of all pediatric cancer. In this study, we investigated germline sequence and structural variation in a broad set of genes in two large, independent RMS cohorts. MATERIALS AND METHODS: Genome sequencing of the discovery cohort (n = 273) and exome sequencing of the secondary cohort (n = 121) were conducted on germline DNA. Analyses were performed on 130 cancer susceptibility genes (CSG). Pathogenic or likely pathogenic (P/LP) variants were predicted using the American College of Medical Genetics and Genomics (ACMG) criteria. Structural variation and survival analyses were performed on the discovery cohort. RESULTS: We found that 6.6%-7.7% of patients with RMS harbored P/LP variants in dominant-acting CSG. An additional approximately 1% have structural variants (ATM, CDKN1C) in CSGs. CSG variants did not influence survival, although there was a significant correlation with an earlier age of tumor onset. There was a nonsignificant excess of P/LP variants in dominant inheritance genes in the patients with FOXO1 fusion-negative RMS patients versus the patients with FOXO1 fusion-positive RMS. We identified pathogenic germline variants in CSGs previously (TP53, NF1, DICER1, mismatch repair genes), rarely (BRCA2, CBL, CHEK2, SMARCA4), or never (FGFR4) reported in RMS. Numerous genes (TP53, BRCA2, mismatch repair) were on the ACMG Secondary Findings 2.0 list. CONCLUSION: In two cohorts of patients with RMS, we identified pathogenic germline variants for which gene-specific therapies and surveillance guidelines may be beneficial. In families with a proband with an RMS-risk P/LP variant, genetic counseling and cascade testing should be considered, especially for ACMG Secondary Findings genes and/or with gene-specific surveillance guidelines.


Assuntos
Predisposição Genética para Doença , Rabdomiossarcoma/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Variação Genética , Células Germinativas , Humanos , Lactente , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA