Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7982): 393-401, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821590

RESUMO

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Assuntos
Rejeição de Enxerto , Transplante de Rim , Macaca fascicularis , Suínos , Transplante Heterólogo , Animais , Humanos , Animais Geneticamente Modificados , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Rim/métodos , Polissacarídeos/deficiência , Suínos/genética , Transplante Heterólogo/métodos , Transgenes/genética
2.
Methods Mol Biol ; 2579: 111-123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045202

RESUMO

Cell cycle synchronization allows cells in a culture, originally at different stages of the cell cycle, to be brought to the same phase. It is normally performed by applying cell cycle arresting chemical agents to cells cultured in monolayer. While effective, isolated chondrocytes tend to dedifferentiate when cultured in monolayer and typically require 3D culturing methods to ensure phenotypic stability. Here, we describe both the conventional cell cycle synchronization method for cells in monolayer culture and an adapted method of synchronizing primary chondrocytes directly during the cell isolation process to limit potential dedifferentiation. Different methods including serum-starvation and treatment with thymidine, nocodazole, aphidicolin, and RO-3306 can synchronize the chondrocytes at different discrete phases. A cell purity of more than 90% in the S phase can be achieved with simultaneous cell isolation and synchronization using double thymidine treatment, generating a population of synchronized chondrocytes that show increased matrix synthesis when subsequently cultured in 3D.


Assuntos
Cartilagem Articular , Condrócitos , Ciclo Celular , Divisão Celular , Células Cultivadas , Condrócitos/metabolismo , Timidina/metabolismo , Timidina/farmacologia
3.
Nat Commun ; 13(1): 4178, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853870

RESUMO

Human cerebral cancers are known to contain cell types resembling the varying stages of neural development. However, the basis of this association remains unclear. Here, we map the development of mouse cerebrum across the developmental time-course, from embryonic day 12.5 to postnatal day 365, performing single-cell transcriptomics on >100,000 cells. By comparing this reference atlas to single-cell data from >100 glial tumours of the adult and paediatric human cerebrum, we find that tumour cells have an expression signature that overlaps with temporally restricted, embryonic radial glial precursors (RGPs) and their immediate sublineages. Further, we demonstrate that prenatal transformation of RGPs in a genetic mouse model gives rise to adult cerebral tumours that show an embryonic/juvenile RGP identity. Together, these findings implicate the acquisition of embryonic-like states in the genesis of adult glioma, providing insight into the origins of human glioma, and identifying specific developmental cell types for therapeutic targeting.


Assuntos
Cérebro , Glioma , Animais , Encéfalo , Criança , Glioma/genética , Humanos , Camundongos , Neurogênese , Telencéfalo
4.
Cartilage ; 12(4): 526-535, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971093

RESUMO

OBJECTIVE: Although tissue engineering is a promising option for articular cartilage repair, it has been challenging to generate functional cartilaginous tissue. While the synthetic response of chondrocytes can be influenced by various means, most approaches treat chondrocytes as a homogeneous population that would respond similarly. However, isolated cells heterogeneously progress through the cell cycle, which can affect macromolecular biosynthesis. As it is possible to synchronize cells within discrete cell cycle phases, the purpose of this study was to investigate the effects of cell cycle synchronization on the chondrogenic potential of primary articular chondrocytes. DESIGN: Different methods of cell synchronization (serum starvation, thymidine, nocodazole, aphidicolin, and RO-3306) were tested for their ability to synchronize primary articular chondrocytes during the process of cell isolation. Cells (unsynchronized and synchronized) were then encapsulated in alginate gels, cultured for 4 weeks, and analyzed for their structural and biochemical properties. RESULTS: The double-thymidine method yielded the highest level of cell purity, with cells synchronized in S phase. While the cells started to lose synchronization after 24 hours, tissue constructs developed from initially S phase synchronized cells had significantly higher glycosaminoglycan and collagen II amounts than those developed using unsynchronized cells. CONCLUSIONS: Initial synchronization led to long-term changes in cartilaginous tissue formation. This effect was postulated to be due to the rapid auto-induction of TGF-ßs by actively dividing S phase cells, thereby stimulating chondrogenesis. Cell synchronization methods may also be applied in conjunction with redifferentiation methods to improve the chondrogenic potential of dedifferentiated or diseased chondrocytes.


Assuntos
Condrócitos , Condrogênese , Ciclo Celular , Células Cultivadas , Timidina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA