Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Intensive Care Med Exp ; 12(1): 24, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441708

RESUMO

BACKGROUND: Glucocorticoids are commonly used in patients with or at-risk for acute respiratory distress syndrome (ARDS), but optimal use remains unclear despite well-conducted clinical trials. We performed a secondary analysis in patients previously enrolled in the Acute Lung Injury and Biospecimen Repository at the University of Pittsburgh. The primary aim of our study was to investigate early changes in host response biomarkers in response to real-world use of glucocorticoids in patients with acute respiratory failure due to ARDS or at-risk due to a pulmonary insult. Participants had baseline plasma samples obtained on study enrollment and on follow-up 3 to 5 days later to measure markers of innate immunity (IL-6, IL-8, IL-10, TNFr1, ST2, fractalkine), epithelial injury (sRAGE), endothelial injury (angiopoietin-2), and host response to bacterial infections (procalcitonin, pentraxin-3). In our primary analyses, we investigated the effect of receiving glucocorticoids between baseline and follow-up samples on host response biomarkers measured at follow-up by doubly robust inverse probability weighting analysis. In exploratory analyses, we examined associations between glucocorticoid use and previously characterized host response subphenotypes (hyperinflammatory and hypoinflammatory). RESULTS: 67 of 148 participants (45%) received glucocorticoids between baseline and follow-up samples. Dose and type of glucocorticoids varied. Regimens that used hydrocortisone alone were most common (37%), and median daily dose was equivalent to 40 mg methylprednisolone (interquartile range: 21, 67). Participants who received glucocorticoids were more likely to be female, to be on immunosuppressive therapy at baseline, and to have higher baseline levels of ST-2, fractalkine, IL-10, pentraxin-3, sRAGE, and TNFr1. Glucocorticoid use was associated with decreases in IL-6 and increases in fractalkine. In exploratory analyses, glucocorticoid use was more frequent in participants in the hyperinflammatory subphenotype (58% vs 40%, p = 0.05), and was not associated with subphenotype classification at the follow-up time point (p = 0.16). CONCLUSIONS: Glucocorticoid use varied in a cohort of patients with or at-risk for ARDS and was associated with early changes in the systemic host immune response.

2.
Am J Respir Cell Mol Biol ; 70(5): 379-391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301257

RESUMO

GDF15 (growth differentiation factor 15) is a stress cytokine with several proposed roles, including support of stress erythropoiesis. Higher circulating GDF15 levels are prognostic of mortality during acute respiratory distress syndrome, but the cellular sources and downstream effects of GDF15 during pathogen-mediated lung injury are unclear. We quantified GDF15 in lower respiratory tract biospecimens and plasma from patients with acute respiratory failure. Publicly available data from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reanalyzed. We used mouse models of hemorrhagic acute lung injury mediated by Pseudomonas aeruginosa exoproducts in wild-type mice and mice genetically deficient for Gdf15 or its putative receptor, Gfral. In critically ill humans, plasma levels of GDF15 correlated with lower respiratory tract levels and were higher in nonsurvivors. SARS-CoV-2 infection induced GDF15 expression in human lung epithelium, and lower respiratory tract GDF15 levels were higher in coronavirus disease (COVID-19) nonsurvivors. In mice, intratracheal P. aeruginosa type II secretion system exoproducts were sufficient to induce airspace and plasma release of GDF15, which was attenuated with epithelial-specific deletion of Gdf15. Mice with global Gdf15 deficiency had decreased airspace hemorrhage, an attenuated cytokine profile, and an altered lung transcriptional profile during injury induced by P. aeruginosa type II secretion system exoproducts, which was not recapitulated in mice deficient for Gfral. Airspace GDF15 reconstitution did not significantly modulate key lung cytokine levels but increased circulating erythrocyte counts. Lung epithelium releases GDF15 during pathogen injury, which is associated with plasma levels in humans and mice and can increase erythrocyte counts in mice, suggesting a novel lung-blood communication pathway.


Assuntos
COVID-19 , Fator 15 de Diferenciação de Crescimento , Pulmão , Pseudomonas aeruginosa , SARS-CoV-2 , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Humanos , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Infecções por Pseudomonas/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Modelos Animais de Doenças
3.
Respir Res ; 24(1): 136, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210531

RESUMO

BACKGROUND: Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure. METHODS: In a nested case-control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data. RESULTS: Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and < 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively). CONCLUSIONS: This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course.


Assuntos
Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Acetilcarnitina , Estudos de Casos e Controles , Biomarcadores , Síndrome do Desconforto Respiratório/diagnóstico , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/complicações , Ácidos Graxos
4.
CHEST Crit Care ; 1(3)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38250011

RESUMO

BACKGROUND: Hospitalized patients with severe COVID-19 follow heterogeneous clinical trajectories, requiring different levels of respiratory support and experiencing diverse clinical outcomes. Differences in host immune responses to SARS-CoV-2 infection may account for the heterogeneous clinical course, but we have limited data on the dynamic evolution of systemic biomarkers and related subphenotypes. Improved understanding of the dynamic transitions of host subphenotypes in COVID-19 may allow for improved patient selection for targeted therapies. RESEARCH QUESTION: We examined the trajectories of host-response profiles in severe COVID-19 and evaluated their prognostic impact on clinical outcomes. STUDY DESIGN AND METHODS: In this prospective observational study, we enrolled 323 inpatients with COVID-19 receiving different levels of baseline respiratory support: (1) low-flow oxygen (37%), (2) noninvasive ventilation (NIV) or high-flow oxygen (HFO; 29%), (3) invasive mechanical ventilation (27%), and (4) extracorporeal membrane oxygenation (7%). We collected plasma samples on enrollment and at days 5 and 10 to measure host-response biomarkers. We classified patients by inflammatory subphenotypes using two validated predictive models. We examined clinical, biomarker, and subphenotype trajectories and outcomes during hospitalization. RESULTS: IL-6, procalcitonin, and angiopoietin 2 persistently were elevated in patients receiving higher levels of respiratory support, whereas soluble receptor of advanced glycation end products (sRAGE) levels displayed the inverse pattern. Patients receiving NIV or HFO at baseline showed the most dynamic clinical trajectory, with 24% eventually requiring intubation and exhibiting worse 60-day mortality than patients receiving invasive mechanical ventilation at baseline (67% vs 35%; P < .0001). sRAGE levels predicted NIV failure and worse 60-day mortality for patients receiving NIV or HFO, whereas IL-6 levels were predictive in all patients regardless of level of support (P < .01). Patients classified to a hyperinflammatory subphenotype at baseline (< 10%) showed worse 60-day survival (P < .0001) and 50% of them remained classified as hyperinflammatory at 5 days after enrollment. INTERPRETATION: Longitudinal study of the systemic host response in COVID-19 revealed substantial and predictive interindividual variability influenced by baseline levels of respiratory support.

5.
Am J Respir Cell Mol Biol ; 66(2): e1-e14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35103557

RESUMO

Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.


Assuntos
Lesão Pulmonar Aguda/patologia , Inflamação/fisiopatologia , Relatório de Pesquisa/tendências , Lesão Pulmonar Aguda/imunologia , Animais
6.
Circulation ; 143(24): 2395-2405, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34125564

RESUMO

In the United States, race-based disparities in cardiovascular disease care have proven to be pervasive, deadly, and expensive. African American/Black, Hispanic/Latinx, and Native/Indigenous American individuals are at an increased risk of cardiovascular disease and are less likely to receive high-quality, evidence-based medical care as compared with their White American counterparts. Although the United States population is diverse, the cardiovascular workforce that provides its much-needed care lacks diversity. The available data show that care provided by physicians from racially diverse backgrounds is associated with better quality, both for minoritized patients and for majority patients. Not only is cardiovascular workforce diversity associated with improvements in health care quality, but racial diversity among academic teams and research scientists is linked with research quality. We outline documented barriers to achieving workforce diversity and suggest evidence-based strategies to overcome these barriers. Key strategies to enhance racial diversity in cardiology include improving recruitment and retention of racially diverse members of the cardiology workforce and focusing on cardiovascular health equity for patients. This review draws attention to academic institutions, but the implications should be considered relevant for nonacademic and community settings as well.


Assuntos
Cardiologistas/estatística & dados numéricos , Feminino , Equidade em Saúde , Humanos , Masculino , Grupos Raciais , Estados Unidos , Recursos Humanos
8.
J Cell Physiol ; 236(8): 5676-5685, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400290

RESUMO

Interleukin (IL)-37 diminishes a variety of inflammatory responses through ligation to its receptor IL-1R8/Sigirr. Sigirr is a Toll like receptor/IL-1R family member. We have shown that Sigirr is not stable in response to IL-37 treatment. IL-37-induced Sigirr degradation is mediated by the ubiquitin-proteasome system, and the process is reversed by a deubiquitinase, USP13. However, the molecular mechanisms by which USP13 regulates Sigirr stability have not been revealed. In this study, we investigate the roles of glycogen synthesis kinase 3ß (GSK3ß) in Sigirr phosphorylation and stability. IL-37 stimulation induced Sigirr phosphorylation and degradation, as well as activation of GSK3ß. Inhibition of GSK3ß attenuated IL-37-induced Sigirr phosphorylation, while exogenous expressed GSK3ß promoted Sigirr phosphorylation at threonine (T)372 residue. Sigirr association with GSK3ß was detected. Amino acid residues 51-101 in GSK3ß were identified as the Sigirr binding domain. These data indicate that GSK3ß mediates IL-37-induced threonine phosphorylation of Sigirr. Further, we investigated the role of GSK3ß-mediated phosphorylation of Sigirr in Sigirr degradation. Inhibition of GSK3ß attenuated IL-37-induced Sigirr degradation, while T372 mutant of Sigirr was resistant to IL-37-mediated degradation. Furthermore, inhibition of Sigirr phosphorylation prevented Sigirr internalization and association with USP13, suggesting GSK3ß promotes Sigirr degradation through disrupting Sigirr association with USP13.


Assuntos
Células Epiteliais/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Interleucina-1/farmacologia , Fosforilação/efeitos dos fármacos , Receptores de Interleucina-1/efeitos dos fármacos , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
9.
ATS Sch ; 1(4): 353-363, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-33870306

RESUMO

Physician-scientists comprise an exceedingly small fraction of the physician workforce. As the fields of pulmonary, critical care, and sleep medicine continue to invest in the development of the physician-scientist workforce, recruitment and retention strategies need to consider the temporal trend in the decline in numbers of trainees pursuing basic research, the challenges of trainees from underrepresented groups in medicine, and opportunities for career and scientific advancement of women physician-scientists. In this perspective article, we examine the headwinds in the training and education of physician-scientists and highlight potential solutions to reverse these trends.

10.
Respir Res ; 19(1): 206, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30359271

RESUMO

BACKGROUND: The ubiquitin-proteasome pathway, mediated in part, by ubiquitin E3 ligases, is critical in regulating cellular processes such as cell proliferation, apoptosis, and migration. FBXO17 was recently identified as an F-box protein that targets glycogen synthase kinase-3ß to the E3 ubiquitin ligase protein complex for polyubiquitination and proteasomal degradation. Here, we identified that in several lung adenocarcinoma cell lines, FBXO17 cellular protein was detected at relatively high levels, as was expression in a subset of lung cancers. Hence, we investigated the effects of FBXO17 on cell proliferation. METHODS: Single cell RNA sequencing analysis was performed on a resection of a non-small cell lung carcinoma tumor to examine FBXO17 expression. Multiple lung cancer cell lines were immunoblotted, and The Cancer Genome Atlas was analyzed to determine if FBXO17 expression was amplified in a subset of lung cancers. A549 cells were transfected with empty vector or FBXO17-V5 plasmid and immunoblotted for Akt pathway mediators including PDK1, ERK1/2, ribosomal protein S6, and CREB. Cell proliferation and viability were analyzed by trypan blue exclusion, BrdU incorporation and an MTS-based fluorometric assay. Studies were also performed after transfecting with sifbxo17. Samples were used in an RNA microarray analysis to evaluate pathways affected by reduced FBXO17 gene expression. RESULTS: We observed that overexpression of FBXO17 increased A549 cell proliferation coupled with Akt activation. Ectopically expressed FBXO17 also increased ERK1/2 kinase activation and increased phosphorylation of RPS6, a downstream target of mTOR. We also observed an increased number of cells in S-phase and increased metabolic activity of lung epithelial cells expressing FBXO17. FBXO17 knockdown reduced Akt Ser 473 phosphorylation approaching statistical significance with no effect on Thr 308. However, ERK1/2 phosphorylation, cellular metabolic activity, and overall cell numbers were reduced. When we analyzed RNA profiles of A549 cells with reduced FBXO17 expression, we observed downregulation of several genes associated with cell proliferation and metabolism. CONCLUSIONS: These data support a role for FBXO17 abundance, when left unchecked, in regulating cell proliferation and survival through modulation of Akt and ERK kinase activation. The data raise a potential role for the F-box subunit in modulating tumorigenesis.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Proliferação de Células/fisiologia , Proteínas F-Box/biossíntese , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células A549 , Adenocarcinoma de Pulmão/patologia , Humanos , Neoplasias Pulmonares/patologia
11.
Biochem J ; 474(20): 3543-3557, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28883123

RESUMO

The IFN gamma receptor 1 (IFNGR1) binds IFN-γ and activates gene transcription pathways crucial for controlling bacterial and viral infections. Although decreases in IFNGR1 surface levels have been demonstrated to inhibit IFN-γ signaling, little is known regarding the molecular mechanisms controlling receptor stability. Here, we show in epithelial and monocytic cell lines that IFNGR1 displays K48 polyubiquitination, is proteasomally degraded, and harbors three ubiquitin acceptor sites at K277, K279, and K285. Inhibition of glycogen synthase kinase 3 beta (GSK3ß) destabilized IFNGR1 while overexpression of GSK3ß increased receptor stability. We identified critical serine and threonine residues juxtaposed to ubiquitin acceptor sites that impacted IFNGR1 stability. In CRISPR-Cas9 IFNGR1 generated knockout cell lines, cellular expression of IFNGR1 plasmids encoding ubiquitin acceptor site mutations demonstrated significantly impaired STAT1 phosphorylation and decreased STAT1-dependent gene induction. Thus, IFNGR1 undergoes rapid site-specific polyubiquitination, a process modulated by GSK3ß. Ubiquitination appears to be necessary for efficient IFNGR1-dependent gamma gene induction and represents a relatively uncharacterized regulatory mechanism for this receptor.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Transdução de Sinais/fisiologia , Sistemas CRISPR-Cas/genética , Células HEK293 , Humanos , Interferon gama/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Receptores de Interferon/química , Transdução de Sinais/efeitos dos fármacos , Receptor de Interferon gama
12.
Nat Clin Pract Rheumatol ; 4(4): 201-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18319710

RESUMO

Autoimmune inflammatory myopathies, referred to as myositis, comprise a heterogeneous group of chronic inflammatory muscle diseases that present with various clinical phenotypes, histologic changes and autoantibodies, resulting in progressive inflammatory muscle damage and weakness. In up to 20% of myositis patients, particularly those with dermatomyositis, there is an association with cancer that is most frequently diagnosed within 1 year of presentation of myositis. Accumulating data show that autoantibodies in myositis target a specific group of intracellular molecules that are not muscle-specific in their expression. The striking association between autoantibodies recognizing ubiquitously expressed molecules and distinct clinical phenotypes suggests that the target tissues themselves might regulate and shape the phenotype-specific immune response in myositis. Studies indicate that changes in phenotype-specific autoantigens, such as altered structure, enhanced expression, and acquisition of adjuvant properties during various forms of cellular stress, apoptosis, and transformation, might be mechanistically important in this regard. This Review discusses these developments and highlights a central role of autoantigens themselves as a critical partner in driving autoimmune diseases, and the potential for their therapeutic manipulation. In addition, we will highlight insights that the cancer-autoimmunity interface in this group of diseases provides into the relationship between the anticancer immune response and autoimmune diseases.


Assuntos
Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Miosite/imunologia , Autoanticorpos/biossíntese , Autoantígenos/metabolismo , Doenças Autoimunes/complicações , Doenças Autoimunes/metabolismo , Doenças Autoimunes/terapia , Dermatomiosite/complicações , Dermatomiosite/imunologia , Humanos , Miosite/complicações , Miosite/metabolismo , Neoplasias/complicações , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA