Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
AIDS ; 38(1): 1-7, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37792358

RESUMO

OBJECTIVE: HIV-associated neuroinflammation persists in the brain despite suppressive combination antiretroviral therapy (cART). We evaluated associations between a subset of CD8 + T cells, termed CD4 dim CD8 bright T cells, and soluble markers of immune activation and/or neuroinflammation in the cerebrospinal fluid (CSF) and plasma of people with HIV (PWH). DESIGN: Fifteen cART-naive PWH were enrolled and underwent blood draw, lumbar puncture for CSF collection, and neuropsychological tests at week 0 (pre-cART) and 24 weeks after cART initiation. METHODS: CSF and peripheral blood T cells were evaluated with flow cytometry and soluble markers of immune activation were measured by multiplex and singleplex assays. Spearman bootstrap correlation coefficients with 10 000 resamples were computed and reported with corresponding 95% confidence intervals (CIs) for each marker of interest and T-cell type. RESULTS: The frequency of CSF CD4 dim CD8 bright T cells at week 0 was inversely related with CSF neopterin. In contrast, at week 24, CSF CD4 - CD8 + T cells were positively correlated with CSF s100ß, a marker of brain injury. In the blood, at week 0, CD4 dim CD8 bright T cells were inversely correlated with MCP-1, IP-10, IL-8, IL-6, G-CSF, and APRIL and positively correlated with plasma RANTES and MMP1. At week 0, the frequency of blood CD4 - CD8 + were positively correlated with CRP and BAFF. CONCLUSION: CD4 dim CD8 bright T cells are associated with some anti-inflammatory properties, whereas CD4 - CD8 + T cells may contribute to inflammation and injury. Assessing the contrast between these two cell populations in neuroHIV may inform targeted therapeutic intervention to reduce neuroinflammation and associated neurocognitive impairment.


Assuntos
Infecções por HIV , Doenças Neuroinflamatórias , Humanos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Cognição , Infecções por HIV/complicações , Doenças Neuroinflamatórias/etiologia
2.
iScience ; 26(10): 108015, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860759

RESUMO

Persistent HIV-1 reservoirs of infected CD4 T cells are a major barrier to HIV-1 cure, although the mechanisms by which they are established and maintained in vivo remain poorly characterized. To elucidate host cell gene expression patterns that govern virus gene expression, we analyzed viral RNA+ (vRNA) CD4 T cells of untreated simian immunodeficiency virus (SIV)-infected macaques by single-cell RNA sequencing. A subset of vRNA+ cells distinguished by spliced and high total vRNA (7-10% of reads) expressed diminished FOS, a component of the Activator protein 1 (AP-1) transcription factor, relative to vRNA-low and -negative cells. Conversely, FOS and JUN, another AP-1 component, were upregulated in HIV DNA+ infected cells compared to uninfected cells from people with HIV-1 on suppressive therapy. Inhibiting c-Fos in latently infected primary cells augmented reactivatable HIV-1 infection. These findings implicate AP-1 in latency establishment and maintenance and as a potential therapeutic target to limit HIV-1 reservoirs.

3.
J Immunol ; 210(9): 1247-1256, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939421

RESUMO

Retinoic acid-inducible gene I (RIG-I) is essential for activating host cell innate immunity to regulate the immune response against many RNA viruses. We previously identified that a small molecule compound, KIN1148, led to the activation of IFN regulatory factor 3 (IRF3) and served to enhance protection against influenza A virus (IAV) A/California/04/2009 infection. We have now determined direct binding of KIN1148 to RIG-I to drive expression of IFN regulatory factor 3 and NF-κB target genes, including specific immunomodulatory cytokines and chemokines. Intriguingly, KIN1148 does not lead to ATPase activity or compete with ATP for binding but activates RIG-I to induce antiviral gene expression programs distinct from type I IFN treatment. When administered in combination with a vaccine against IAV, KIN1148 induces both neutralizing Ab and IAV-specific T cell responses compared with vaccination alone, which induces comparatively poor responses. This robust KIN1148-adjuvanted immune response protects mice from lethal A/California/04/2009 and H5N1 IAV challenge. Importantly, KIN1148 also augments human CD8+ T cell activation. Thus, we have identified a small molecule RIG-I agonist that serves as an effective adjuvant in inducing noncanonical RIG-I activation for induction of innate immune programs that enhance adaptive immune protection of antiviral vaccination.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Proteína DEAD-box 58/metabolismo , Virus da Influenza A Subtipo H5N1/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Adjuvantes Imunológicos , Antivirais/farmacologia , Imunidade Inata
4.
Cells ; 12(3)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766808

RESUMO

The hallmark of HIV-1 infection is the rapid dysregulation of immune functions. Recent investigations for biomarkers of such dysregulation in people living with HIV (PLWH) reveal a strong correlation between viral rebound and immune activation with an increased abundance of extracellular vesicles (EVs) enriched with microRNA-155. We propose that the activation of peripheral blood mononuclear cells (PBMCs) leads to an increased miR-155 expression and production of miR-155-rich extracellular vesicles (miR-155-rich EVs), which can exacerbate HIV-1 infection by promoting viral replication. PBMCs were incubated with either HIV-1 (NL4.3Balenv), a TLR-7/8 agonist, or TNF. EVs were harvested from the cell culture supernatant by differential centrifugation, and RT-qPCR quantified miR-155 in cells and derived EVs. The effect of miR-155-rich EVs on replication of HIV-1 in incubated PBMCs was then measured by viral RNA and DNA quantification. HIV-1, TLR7/8 agonist, and TNF each induced the release of miR-155-rich EVs by PBMCs. These miR-155-rich EVs increased viral replication in PBMCs infected in vitro. Infection with HIV-1 and inflammation promote the production of miR-155-rich EVs, enhancing viral replication. Such autocrine loops, therefore, could influence the course of HIV-1 infection by promoting viral replication.


Assuntos
Vesículas Extracelulares , Infecções por HIV , HIV-1 , MicroRNAs , Humanos , MicroRNAs/metabolismo , HIV-1/metabolismo , Leucócitos Mononucleares/metabolismo , Vesículas Extracelulares/metabolismo , Infecções por HIV/metabolismo
5.
Vaccines (Basel) ; 10(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35632473

RESUMO

The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants. Here, we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprising stabilized, pre-fusion spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction in lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.

6.
J Virol ; 96(2): e0159921, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705557

RESUMO

Live oral vaccines have been explored for their protective efficacy against respiratory viruses, particularly for adenovirus serotypes 4 and 7. The potential of a live oral vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, remains unclear. In this study, we assessed the immunogenicity of live SARS-CoV-2 delivered to the gastrointestinal tract in rhesus macaques and its protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge. Postpyloric administration of SARS-CoV-2 by esophagogastroduodenoscopy resulted in limited virus replication in the gastrointestinal tract and minimal to no induction of mucosal antibody titers in rectal swabs, nasal swabs, and bronchoalveolar lavage fluid. Low levels of serum neutralizing antibodies were induced and correlated with modestly diminished viral loads in nasal swabs and bronchoalveolar lavage fluid following intranasal and intratracheal SARS-CoV-2 challenge. Overall, our data show that postpyloric inoculation of live SARS-CoV-2 is weakly immunogenic and confers partial protection against respiratory SARS-CoV-2 challenge in rhesus macaques. IMPORTANCE SARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution, and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations; however, no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Here, we report that oral administration of live SARS-CoV-2 in nonhuman primates may offer prophylactic benefits, but the formulation and route of administration will require further optimization.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Administração Oral , Animais , Feminino , Macaca mulatta , Masculino , Eficácia de Vacinas
7.
Sci Transl Med ; 14(632): eabi5735, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34914540

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 spike ferritin nanoparticle (SpFN) vaccine in nonhuman primates. High-dose (50 µg) SpFN vaccine, given twice 28 days apart, induced a Th1-biased CD4 T cell helper response and elicited neutralizing antibodies against SARS-CoV-2 wild-type and variants of concern, as well as against SARS-CoV-1. These potent humoral and cell-mediated immune responses translated into rapid elimination of replicating virus in the upper and lower airways and lung parenchyma of nonhuman primates following high-dose SARS-CoV-2 respiratory challenge. The immune response elicited by SpFN vaccination and resulting efficacy in nonhuman primates supports the utility of SpFN as a vaccine candidate for SARS-causing betacoronaviruses.


Assuntos
COVID-19 , Nanopartículas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Ferritinas , Humanos , Imunidade , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34470866

RESUMO

Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/virologia , Macaca mulatta/imunologia , Nanopartículas/química , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Ferritinas/química , SARS-CoV-2/metabolismo , Linfócitos T/imunologia
9.
bioRxiv ; 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33851155

RESUMO

Emergence of novel variants of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean neutralizing antibody titers of 14,000-21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within four days in 7 of 8 animals receiving 50 µg RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only ∼2-fold relative to USA-WA1. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-like betacoronavirus vaccine development. SIGNIFICANCE STATEMENT: The emergence of SARS-CoV-2 variants of concern (VOC) that reduce the efficacy of current COVID-19 vaccines is a major threat to pandemic control. We evaluate a SARS-CoV-2 Spike receptor-binding domain ferritin nanoparticle protein vaccine (RFN) in a nonhuman primate challenge model that addresses the need for a next-generation, efficacious vaccine with increased pan-SARS breadth of coverage. RFN, adjuvanted with a liposomal-QS21 formulation (ALFQ), elicits humoral and cellular immune responses exceeding those of current vaccines in terms of breadth and potency and protects against high-dose respiratory tract challenge. Neutralization activity against the B.1.351 VOC within two-fold of wild-type virus and against SARS-CoV-1 indicate exceptional breadth. Our results support consideration of RFN for SARS-like betacoronavirus vaccine development.

10.
Pathogens ; 10(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925397

RESUMO

Extracellular vesicles (EVs) and their contents (proteins, lipids, messenger RNA, microRNA, and DNA) are viewed as intercellular signals, cell-transforming agents, and shelters for viruses that allow both diagnostic and therapeutic interventions. EVs circulating in the blood of individuals infected with human immunodeficiency virus (HIV-1) may provide insights into pathogenesis, inflammation, and disease progression. However, distinguishing plasma membrane EVs from exosomes, exomeres, apoptotic bodies, virions, and contaminating proteins remains challenging. We aimed at comparing sucrose and iodixanol density and velocity gradients along with commercial kits as a means of separating EVs from HIV particles and contaminating protein like calprotectin; and thereby evaluating the suitability of current plasma EVs analysis techniques for identifying new biomarkers of HIV-1 immune activation. Multiple analysis have been performed on HIV-1 infected cell lines, plasma from HIV-1 patients, or plasma from HIV-negative individuals spiked with HIV-1. Commercial kits, the differential centrifugation and density or velocity gradients to precipitate and separate HIV, EVs, and proteins such as calprotectin, have been used. EVs, virions, and contaminating proteins were characterized using Western blot, ELISA, RT-PCR, hydrodynamic size measurement, and enzymatic assay. Conversely to iodixanol density or velocity gradient, protein and virions co-sedimented in the same fractions of the sucrose density gradient than AChE-positive EVs. Iodixanol velocity gradient provided the optimal separation of EVs from viruses and free proteins in culture supernatants and plasma samples from a person living with HIV (PLWH) or a control and revealed a new population of large EVs enriched in microRNA miR-155 and mitochondrial DNA. Although EVs and their contents provide helpful information about several key events in HIV-1 pathogenesis, their purification and extensive characterization by velocity gradient must be investigated thoroughly before further use as biomarkers. By revealing a new population of EVs enriched in miR-155 and mitochondrial DNA, this study paves a way to increase our understanding of HIV-1 pathogenesis.

11.
bioRxiv ; 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33791694

RESUMO

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine in nonhuman primates (NHPs). High-dose (50 µ g) SpFN vaccine, given twice within a 28 day interval, induced a Th1-biased CD4 T cell helper response and a peak neutralizing antibody geometric mean titer of 52,773 against wild-type virus, with activity against SARS-CoV-1 and minimal decrement against variants of concern. Vaccinated animals mounted an anamnestic response upon high-dose SARS-CoV-2 respiratory challenge that translated into rapid elimination of replicating virus in their upper and lower airways and lung parenchyma. SpFN's potent and broad immunogenicity profile and resulting efficacy in NHPs supports its utility as a candidate platform for SARS-like betacoronaviruses. ONE-SENTENCE SUMMARY: A SARS-CoV-2 Spike protein ferritin nanoparticle vaccine, co-formulated with a liposomal adjuvant, elicits broad neutralizing antibody responses that exceed those observed for other major vaccines and rapidly protects against respiratory infection and disease in the upper and lower airways and lung tissue of nonhuman primates.

12.
Front Immunol ; 11: 1430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733475

RESUMO

The innate immune response to cytosolic DNA involves transcriptional activation of type I interferons (IFN-I) and proinflammatory cytokines. This represents the culmination of intracellular signaling pathways that are initiated by pattern recognition receptors that engage DNA and require the adaptor protein Stimulator of Interferon Genes (STING). These responses lead to the generation of cellular and tissue states that impair microbial replication and facilitate the establishment of long-lived, antigen-specific adaptive immunity. Ultimately this can lead to immune-mediated protection from infection but also to the cytotoxic T cell-mediated clearance of tumor cells. Intriguingly, pharmacologic activation of STING-dependent phenotypes is known to enhance both vaccine-associated immunogenicity and immune-based anti-tumor therapies. Unfortunately, the STING protein exists as multiple variant forms in the human population that exhibit differences in their reactivity to chemical stimuli and in the intensity of molecular signaling they induce. In light of this, STING-targeting drug discovery efforts require an accounting of protein variant-specific activity. Herein we describe a small molecule termed M04 that behaves as a novel agonist of human STING. Importantly, we find that the molecule exhibits a differential ability to activate STING based on the allelic variant examined. Furthermore, while M04 is inactive in mice, expression of human STING in mouse cells rescues reactivity to the compound. Using primary human cells in ex vivo assays we were also able to show that M04 is capable of simulating innate responses important for adaptive immune activation such as cytokine secretion, dendritic cell maturation, and T cell cross-priming. Collectively, this work demonstrates the conceivable utility of a novel agonist of human STING both as a research tool for exploring STING biology and as an immune potentiating molecule.


Assuntos
Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Proteínas de Membrana/agonistas , Alelos , Animais , Descoberta de Drogas , Humanos , Imunidade Inata/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos
14.
Curr HIV/AIDS Rep ; 16(3): 236-243, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31062168

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to summarize the current knowledge on the role of CD4+ T lymphocytes leading to HIV assault and persistence in the central nervous system (CNS) and the elimination of HIV-infected CNS resident cells by CD8+ T lymphocytes. RECENT FINDINGS: HIV targets the CNS early in infection, and HIV-infected individuals suffer from mild forms of neurological impairments even under antiretroviral therapy (ART). CD4+ T cells and monocytes mediate HIV entry into the brain and constitute a source for HIV persistence and neuronal damage. HIV-specific CD8+ T cells are also massively recruited in the CNS in acute infection to control viral replication but cannot eliminate HIV-infected cells within the CNS. This review summarizes the involvement of CD4+ T cells in seeding and maintaining HIV infection in the brain and describes the involvement of CD8+ T cells in HIV neuropathogenesis, playing a role still to be deciphered, either beneficial in eliminating HIV-infected cells or deleterious in releasing inflammatory cytokines.


Assuntos
Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Sistema Nervoso Central/patologia , Infecções por HIV/patologia , HIV-1/imunologia , Linfócitos T CD4-Positivos/imunologia , Sistema Nervoso Central/virologia , Citocinas/imunologia , Infecções por HIV/imunologia , Humanos , Monócitos
15.
J Acquir Immune Defic Syndr ; 70(3): 219-27, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26181817

RESUMO

BACKGROUND: Because of factors only partly understood, the generalized elevated immune activation and inflammation characterizing HIV-1-infected patients are corrected incompletely with antiretroviral therapy (ART). Extracellular vesicles (EVs) including exosomes and microvesicles released by several cell types may contribute to immune activation and dysfunction. EV size, abundance, and content appear to differ according to infection phase, disease progression, and ART. METHODS: We examined whether the size of EVs and the abundance of exosomes in plasma are associated with cell and tissue activation as well as with viral production. Acetylcholinesterase-bearing (AChE+) exosomes in plasma were quantified using an AChE assay. EV size was analyzed using dynamic light scattering. Proteins and microRNAs present in EVs were detected by Western blot and real-time polymerase chain reaction, respectively. RESULTS: Exosomes were found more abundant in the plasma of ART-naive patients. EV size was larger in ART-naive than in ART-suppressed patients, elite controllers, or healthy control subjects. Both exosome abundance and EV sizes were inversely correlated with CD4/CD8 T-cell ratio and neutrophil, platelet, and CD4 T-cell counts and positively correlated with CD8 T-cell counts. A negative correlation was found between CD4 T-cell nadir and exosome abundance, but not EV size. Levels of miR-155 and miR-223 but not miR-92 were strongly correlated negatively with EV abundance and size in ART-naive patients. CONCLUSIONS: Monitoring of circulating EVs and EV-borne microRNA is possible and may provide new insight into HIV-1 pathogenesis, disease progression, and the associated inflammatory state, as well as the efficacy of ART and the treatments intended to reduce immune activation.


Assuntos
Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Infecções por HIV/sangue , HIV-1/isolamento & purificação , MicroRNAs/sangue , Adulto , Fármacos Anti-HIV/uso terapêutico , Biomarcadores , Relação CD4-CD8 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Exossomos/fisiologia , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Viremia
16.
Biochimie ; 95(9): 1677-88, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23774297

RESUMO

Progesterone, the cationic amphiphile U18666A and a phospholipase inhibitor (Methyl Arachidonyl Fluoro Phosphonate, MAFP) inhibited by 70%-90% HIV production in viral reservoir cells, i.e. human THP-1 monocytes and monocyte-derived macrophages (MDM). These compounds triggered an inhibition of fluid phase endocytosis (macropinocytosis) and modified cellular lipid homeostasis since endosomes accumulated filipin-stained sterols and Bis(Monoacylglycero)Phosphate (BMP). BMP was quantified using a new cytometry procedure and was increased by 1.25 times with MAFP, 1.7 times with U18666A and 2.5 times with progesterone. MAFP but not progesterone or U18666A inhibited the hydrolysis of BMP by the Pancreatic Lipase Related Protein 2 (PLRP2) as shown by in-vitro experiments. The possible role of sterol transporters in steroid-mediated BMP increase is discussed. Electron microscopy showed the accumulation of viral particles either into large intracellular viral-containing compartments or outside the cells, indicating that endosomal accumulation of BMP could block intracellular biogenesis of viral particles while inhibition of macropinocytosis would prevent viral particle uptake. This is the first report linking BMP metabolism with a natural steroid such as progesterone or with involvement of a phospholipase A1 activity. BMP cellular content could be used as a biomarker for efficient anti-viral drugs.


Assuntos
Endossomos/metabolismo , HIV/fisiologia , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Fosfolipases/antagonistas & inibidores , Progesterona/farmacologia , Replicação Viral/efeitos dos fármacos , Androstenos/farmacologia , Ácidos Araquidônicos/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/virologia , Inibidores Enzimáticos/farmacologia , HIV/efeitos dos fármacos , Humanos , Lipase/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Monócitos/citologia , Organofosfonatos/farmacologia , Pinocitose/efeitos dos fármacos , Vírion/efeitos dos fármacos , Vírion/fisiologia
17.
J Biol Chem ; 288(27): 20014-33, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23661700

RESUMO

Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 10(4)-10(6) copies/ml TAR RNA in exosomes derived from infected culture supernatants and 10(3) copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida/metabolismo , Exossomos/metabolismo , Repetição Terminal Longa de HIV , HIV-1/metabolismo , HIV-1/patogenicidade , RNA Viral/metabolismo , Síndrome da Imunodeficiência Adquirida/genética , Síndrome da Imunodeficiência Adquirida/patologia , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Quinase 9 Dependente de Ciclina/biossíntese , Quinase 9 Dependente de Ciclina/genética , Regulação para Baixo , Exossomos/genética , Exossomos/patologia , HIV-1/genética , Células HeLa , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , RNA Viral/genética
18.
Biochim Biophys Acta ; 1811(7-8): 419-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21554982

RESUMO

The interfacial physical properties of bis(monoacylglycero)phosphate (BMP) and its derivatives with three oleoyl chains (hemi-BDP) and four oleoyl chains (bis(diacylglycero)phosphate, BDP) were investigated using Langmuir monomolecular films. The mean molecular area of BMP at the collapse surface pressure (45mN m(-1)) was similar to those measured with other phospholipids bearing two acyl chains (66 and 59.6Å(2) molecule(-1) at pH 5.5 and 8.0, respectively). In Hemi-BDP and BDP, the mean molecular area increased by 26 and 35Å(2) molecule(-1) per additional acyl chain at pH 5.5 and 8.0, respectively. When BMP was added to a phospholipid mixture mimicking late endosome membrane composition at pH 8.0, the mean phospholipid molecular area increased by 7% regardless of the surface pressure. In contrast, the variation in molecular area was surface pressure-dependent at pH 5.5, a pH value close to that of intra-endosomal content. BMP and hemi-BDP, but not BDP, were hydrolyzed by pancreatic lipase-related protein 2 (PLRP2), which exhibits phospholipase A(1) activity. At pH 5.5, the maximum activities of PLRP2 on BMP were recorded at high surface pressures (25-35mN/m). At pH 8.0, the PLRP2 activity vs. surface pressure showed a bell-shaped curve with maximum activities at 15mN/m for both BMP and hemi-BDP. This is a new activity for this enzyme which could degrade cellular BMP since both human PLRP2 (HPLRP2) and BMP were localized in human monocytic THP-1 cells. This is the first report on the cellular localization of HPLRP2 in human monocytes.


Assuntos
Lipase/metabolismo , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Monoglicerídeos/metabolismo , Monoglicerídeos/farmacologia , Sequência de Bases , Fenômenos Biofísicos , Linhagem Celular , DNA Complementar/genética , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Imuno-Histoquímica , Lipase/genética , Lipólise , Lisofosfolipídeos/química , Estrutura Molecular , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monoglicerídeos/química , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Lipossomas Unilamelares/química
19.
Biochem Pharmacol ; 81(10): 1171-82, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21371441

RESUMO

Cell secretion is a general process involved in various biological responses. Exosomes are part of this process and have gained considerable scientific interest in the past five years. Several steps through investigations across the last 20 years can explain this interest. First characterized during reticulocyte maturation, they were next evidenced as a key player in the immune response and cancer immunotherapy. More recently they were reported as vectors of mRNAs, miRNAs and also lipid mediators able to act on target cells. They are the only type of vesicles released from an intracellular compartment from cells in viable conditions. They appear as a vectorized signaling system operating from inside a donor cell towards either the periphery, the cytosol, or possibly to the nucleus of target cells. Exosomes from normal cells trigger positive effects, whereas those from pathological ones, such as tumor cells or infected ones may trigger non-positive health effects. Therefore regulating the biogenesis and secretion of exosomes appear as a pharmacological challenge to intervene in various pathophysiologies. Exosome biogenesis and molecular content, interaction with target cells, utilisation as biomarkers, and functional effects in various pathophysiologies are considered in this review.


Assuntos
Exossomos/fisiologia , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Doenças Transmissíveis/metabolismo , Exossomos/imunologia , Humanos , Imunidade , Metabolismo dos Lipídeos , MicroRNAs/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Transporte Proteico , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Reticulócitos/citologia , Transdução de Sinais , Evasão Tumoral
20.
J Lipid Res ; 51(8): 2105-20, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20424270

RESUMO

Exosomes are bioactive vesicles released from multivesicular bodies (MVB) by intact cells and participate in intercellular signaling. We investigated the presence of lipid-related proteins and bioactive lipids in RBL-2H3 exosomes. Besides a phospholipid scramblase and a fatty acid binding protein, the exosomes contained the whole set of phospholipases (A2, C, and D) together with interacting proteins such as aldolase A and Hsp 70. They also contained the phospholipase D (PLD) / phosphatidate phosphatase 1 (PAP1) pathway leading to the formation of diglycerides. RBL-2H3 exosomes also carried members of the three phospholipase A2 classes: the calcium-dependent cPLA(2)-IVA, the calcium-independent iPLA(2)-VIA, and the secreted sPLA(2)-IIA and V. Remarkably, almost all members of the Ras GTPase superfamily were present, and incubation of exosomes with GTPgammaS triggered activation of phospholipase A(2) (PLA(2))and PLD(2). A large panel of free fatty acids, including arachidonic acid (AA) and derivatives such as prostaglandin E(2) (PGE(2)) and 15-deoxy-Delta(12,14)-prostaglandinJ(2) (15-d PGJ(2)), were detected. We observed that the exosomes were internalized by resting and activated RBL cells and that they accumulated in an endosomal compartment. Endosomal concentrations were in the micromolar range for prostaglandins; i.e., concentrations able to trigger prostaglandin-dependent biological responses. Therefore exosomes are carriers of GTP-activatable phospholipases and lipid mediators from cell to cell.


Assuntos
Exossomos/metabolismo , Fosfolipases/metabolismo , Prostaglandinas/metabolismo , Transporte Biológico , Linhagem Celular , Dinoprostona/metabolismo , Endossomos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Exossomos/efeitos dos fármacos , Guanosina Trifosfato/farmacologia , Humanos , Lipólise , Proteínas Associadas a Pancreatite , Fosfatidato Fosfatase/metabolismo , Fosfolipase D/metabolismo , Fosfolipases A2/metabolismo , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA