Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928166

RESUMO

Activation of the transcription factor NF-κB in cardiomyocytes has been implicated in the development of cardiac function deficits caused by diabetes. NF-κB controls the expression of an array of pro-inflammatory cytokines and chemokines. We recently discovered that the stress response protein regulated in development and DNA damage response 1 (REDD1) was required for increased pro-inflammatory cytokine expression in the hearts of diabetic mice. The studies herein were designed to extend the prior report by investigating the role of REDD1 in NF-κB signaling in cardiomyocytes. REDD1 genetic deletion suppressed NF-κB signaling and nuclear localization of the transcription factor in human AC16 cardiomyocyte cultures exposed to TNFα or hyperglycemic conditions. A similar suppressive effect on NF-κB activation and pro-inflammatory cytokine expression was also seen in cardiomyocytes by knocking down the expression of GSK3ß. NF-κB activity was restored in REDD1-deficient cardiomyocytes exposed to hyperglycemic conditions by expression of a constitutively active GSK3ß variant. In the hearts of diabetic mice, REDD1 was required for reduced inhibitory phosphorylation of GSK3ß at S9 and upregulation of IL-1ß and CCL2. Diabetic REDD1+/+ mice developed systolic functional deficits evidenced by reduced ejection fraction. By contrast, REDD1-/- mice did not exhibit a diabetes-induced deficit in ejection fraction and left ventricular chamber dilatation was reduced in diabetic REDD1-/- mice, as compared to diabetic REDD1+/+ mice. Overall, the results support a role for REDD1 in promoting GSK3ß-dependent NF-κB signaling in cardiomyocytes and in the development of cardiac function deficits in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Glicogênio Sintase Quinase 3 beta , Miócitos Cardíacos , NF-kappa B , Transdução de Sinais , Fatores de Transcrição , Animais , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos Knockout , Masculino , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Fosforilação , Deleção de Genes
2.
Invest Ophthalmol Vis Sci ; 65(3): 34, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38546584

RESUMO

Purpose: Inflammasome activation has been implicated in the development of retinal complications caused by diabetes. This study was designed to identify signaling events that promote retinal NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in response to diabetes. Methods: Diabetes was induced in mice by streptozotocin administration. Retinas were examined after 16 weeks of diabetes. Human MIO-M1 Müller cells were exposed to hyperglycemic culture conditions. Genetic and pharmacological interventions were used to interrogate signaling pathways. Visual function was assessed in mice using a virtual optomotor system. Results: In the retina of diabetic mice and in Müller cell cultures, NLRP3 and interleukin-1ß (IL-1ß) were increased in response to hyperglycemic conditions and the stress response protein Regulated in Development and DNA damage 1 (REDD1) was required for the effect. REDD1 deletion prevented caspase-1 activation in Müller cells exposed to hyperglycemic conditions and reduced IL-1ß release. REDD1 promoted nuclear factor κB signaling in cells exposed to hyperglycemic conditions, which was necessary for an increase in NLRP3. Expression of a constitutively active GSK3ß variant restored NLRP3 expression in REDD1-deficient cells exposed to hyperglycemic conditions. GSK3 activity was necessary for increased NLRP3 expression in the retina of diabetic mice and in cells exposed to hyperglycemic conditions. Müller glia-specific REDD1 deletion prevented increased retinal NLRP3 levels and deficits in contrast sensitivity in diabetic mice. Conclusions: The data support a role for REDD1-dependent activation of GSK3ß in NLRP3 inflammasome transcriptional priming and in the production of IL-1ß by Müller glia in response to diabetes.


Assuntos
Diabetes Mellitus Experimental , Glicogênio Sintase Quinase 3 beta , Hiperglicemia , Fatores de Transcrição , Animais , Humanos , Camundongos , Dano ao DNA , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas de Choque Térmico , Inflamassomos , Interleucina-1beta , Camundongos Endogâmicos NOD , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Retina , Fatores de Transcrição/metabolismo
3.
JACC Basic Transl Sci ; 9(2): 185-199, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38510715

RESUMO

The severity of aortic stenosis (AS) is associated with acquired von Willebrand syndrome (AVWS) and gastrointestinal bleeding, leading to anemia (Heyde's syndrome). We investigated how anemia is linked with AS and AVWS using the LA100 mouse model and patients with AS. Induction of anemia in LA100 mice increased transforming growth factor (TGF)-ß1 activation, AVWS, and AS progression. Patients age >75 years with severe AS had higher plasma TGF-ß1 levels and more severe anemia than AS patients age <75 years, and there was a correlation between TGF-ß1 and anemia. These data are compatible with the hypothesis that the blood loss anemia of Heyde's syndrome contributes to AS progression via WSS-induced activation of platelet TGF-ß1 and additional gastrointestinal bleeding via WSS-induced AVWS.

4.
Thromb Res ; 225: 47-56, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001283

RESUMO

BACKGROUND AND OBJECTIVES: COVID-19 progression is characterized by systemic small vessel arterial and venous thrombosis. Microvascular endothelial cell (MVEC) activation and injury, platelet activation, and histopathologic features characteristic of acute COVID-19 also describe certain thrombotic microangiopathies, including atypical hemolytic-uremic syndrome (aHUS), thrombotic thrombocytopenic purpura (TTP), and hematopoietic stem cell transplant (HSCT)-associated veno-occlusive disease (VOD). We explored the effect of clinically relevant doses of defibrotide, approved for HSCT-associated VOD, on MVEC activation/injury. METHODS: Human dermal MVEC were exposed to plasmas from patients with acute TMAs or acute COVID-19 in the presence and absence of defibrotide (5µg/ml) and caspase 8, a marker of EC activation and apoptosis, was assessed. RNAseq was used to explore potential mechanisms of defibrotide activity. RESULTS: Defibrotide suppressed TMA plasma-induced caspase 8 activation in MVEC (mean 60.2 % inhibition for COVID-19; p = 0.0008). RNAseq identified six major cellular pathways associated with defibrotide's alteration of COVID-19-associated MVEC changes: TNF-α signaling; IL-17 signaling; extracellular matrix (ECM)-EC receptor and platelet receptor interactions; ECM formation; endothelin activity; and fibrosis. Communications across these pathways were revealed by STRING analyses. Forty transcripts showing the greatest changes induced by defibrotide in COVID-19 plasma/MVEC cultures included: claudin 14 and F11R (JAM), important in maintaining EC tight junctions; SOCS3 and TNFRSF18, involved in suppression of inflammation; RAMP3 and transgelin, which promote angiogenesis; and RGS5, which regulates caspase activation and apoptosis. CONCLUSION: Our data, in the context of a recent clinical trial in severe COVID-19, suggest benefits to further exploration of defibrotide and these pathways in COVID-19 and related endotheliopathies.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Doenças Vasculares , Humanos , Caspase 8 , COVID-19/complicações , Células Endoteliais , Anticoagulantes
5.
Geroscience ; 45(2): 983-999, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36460774

RESUMO

SIRT3 is a longevity factor that acts as the primary deacetylase in mitochondria. Although ubiquitously expressed, previous global SIRT3 knockout studies have shown primarily a cardiac-specific phenotype. Here, we sought to determine how specifically knocking out SIRT3 in cardiomyocytes (SIRTcKO mice) temporally affects cardiac function and metabolism. Mice displayed an age-dependent increase in cardiac pathology, with 10-month-old mice exhibiting significant loss of systolic function, hypertrophy, and fibrosis. While mitochondrial function was maintained at 10 months, proteomics and metabolic phenotyping indicated SIRT3 hearts had increased reliance on glucose as an energy substrate. Additionally, there was a significant increase in branched-chain amino acids in SIRT3cKO hearts without concurrent increases in mTOR activity. Heavy water labeling experiments demonstrated that, by 3 months of age, there was an increase in protein synthesis that promoted hypertrophic growth with a potential loss of proteostasis in SIRT3cKO hearts. Cumulatively, these data show that the cardiomyocyte-specific loss of SIRT3 results in severe pathology with an accelerated aging phenotype.


Assuntos
Sirtuína 3 , Camundongos , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Proteostase , Camundongos Knockout , Miócitos Cardíacos , Mitocôndrias/metabolismo
6.
Mol Cell Biochem ; 477(8): 2025-2032, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35419768

RESUMO

In utero hyperglycemia has consequences on future outcomes in the offsprings. We had earlier shown that in utero hyperglycemia impacts proteoglycans/glycosaminoglycans, one of the key molecules involved in brain development. Hypothalamic HSPGs such as syndecan-1 and syndecan-3 are well known for their involvement in feeding behavior. Therefore, studies were carried out to determine the effect of maternal hyperglycemia on the expression of HSPGs in the hypothalamus of offspring brain. Results revealed increased protein abundance of Syndecan-1 and -3 as well as glypican-1 in postnatal adults from hyperglycemic mothers. This was associated with increased hyperphagia and increased expression of Neuropeptide Y. These results indicate the likely consequences on offsprings exposed to in utero hyperglycemia on its growth.


Assuntos
Hiperglicemia , Sindecana-1 , Adulto , Cinamatos , Feminino , Heparitina Sulfato/metabolismo , Humanos , Hiperfagia , Hipotálamo/metabolismo , Glicoproteínas de Membrana/metabolismo , Mães , Sindecana-1/metabolismo , Tiadiazóis
7.
Blood Adv ; 6(11): 3321-3328, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35358295

RESUMO

Transforming growth factor ß1 (TGF-ß1) regulates a wide variety of events in adult bone marrow (BM), including quiescence of hematopoietic stem cells, via undefined mechanisms. Because megakaryocytes (MKs)/platelets are a rich source of TGF-ß1, we assessed whether TGF-ß1 might inhibit its own production by comparing mice with conditional inactivation of Tgfb1 in MKs (PF4Cre;Tgfb1flox/flox) and control mice. PF4Cre;Tgfb1flox/flox mice had ∼30% more MKs in BM and ∼15% more circulating platelets than control mice (P < .001). Thrombopoietin (TPO) levels in plasma and TPO expression in liver were approximately twofold higher in PF4Cre;Tgfb1flox/flox than in control mice (P < .01), whereas TPO expression in BM cells was similar between these mice. In BM cell culture, TPO treatment increased the number of MKs from wild-type mice by approximately threefold, which increased approximately twofold further in the presence of a TGF-ß1-neutralizing antibody and increased the number of MKs from PF4Cre;Tgfb1flox/flox mice approximately fourfold. Our data reveal a new role for TGF-ß1 produced by MKs/platelets in regulating its own production in BM via increased TPO production in the liver. Additional studies are required to determine the mechanism.


Assuntos
Medula Óssea/metabolismo , Megacariócitos , Trombopoetina , Fator de Crescimento Transformador beta1/metabolismo , Animais , Plaquetas/metabolismo , Fígado/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Trombopoetina/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-34619980

RESUMO

Objective: Aortic stenosis (AS) is characterized by narrowing of the aortic valve opening, resulting in peak blood flow velocity that induces high wall shear stress (WSS) across the valve. Severe AS leads to heart failure and death. There is no treatment available for AS other than valve replacement. Platelet-derived transforming growth factor beta 1 (TGF-ß1) partially contributes to AS progression in mice, and WSS is a potent activator of latent TGF-ß1. N-acetylcysteine (NAC) inhibits WSS-induced TGF-ß1 activation in vitro. We hypothesize that NAC will inhibit AS progression by inhibiting WSS-induced TGF-ß1 activation. Approach: We treated a cohort of Ldlr(-/-)Apob(100/100) low density lipoprotein receptor (LDLR) mice fed a high-fat diet with NAC (2% in drinking water) at different stages of disease progression and measured its effect on AS progression and TGF-ß1 activation. Results: Short-term NAC treatment inhibited AS progression in mice with moderate and severe AS relative to controls, but not in LDLR mice lacking platelet-derived TGF-ß1 (TGF-ß1platlet-KO-LDLR). NAC treatment reduced TGF-ß signaling, p-Smad2 and collagen levels, and mesenchymal transition from isolectin B4 and CD45-positive cells in LDLR mice. Mechanistically, NAC treatment resulted in plasma NAC concentrations ranging from 75.5 to 449.2 ng/mL, which were sufficient to block free thiol labeling of plasma proteins and reduce active TGF-ß1 levels without substantially affecting reactive oxygen species-modified products in valvular cells. Conclusions: Short-term treatment with NAC inhibits AS progression by inhibiting WSS-induced TGF-ß1 activation in the LDLR mouse model of AS, motivating a clinical trial of NAC and/or other thiol-reactive agent(s) as a potential therapy for AS.

9.
J Thromb Haemost ; 19(9): 2268-2274, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34236752

RESUMO

BACKGROUND: A substantial proportion of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe/critical coronavirus disease 2019 (COVID-19) characterized by acute respiratory distress syndrome (ARDS) with thrombosis. OBJECTIVES: We tested the hypothesis that SARS-CoV-2--induced upregulation of tissue factor (TF) expression may be responsible for thrombus formation in COVID-19. METHODS: We compared autopsy lung tissues from 11 patients with COVID-19--associated ARDS with samples from 6 patients with ARDS from other causes (non-COVID-19 ARDS) and 11 normal control lungs. RESULTS: Dual RNA in situ hybridization for SARS-CoV-2 and TF identified sporadic clustered SARS-CoV-2 with prominent co-localization of SARS-CoV-2 and TF RNA. TF expression was 2-fold higher in COVID-19 than in non-COVID-19 ARDS lungs (P = .017) and correlated with the intensity of SARS-CoV-2 staining (R2  = .36, P = .04). By immunofluorescence, TF protein expression was 2.1-fold higher in COVID-19 versus non-COVID-19 ARDS lungs (P = .0048) and 11-fold (P < .001) higher than control lungs. Fibrin thrombi and thrombi positive for platelet factor 4 (PF4) were found in close proximity to regions expressing TF in COVID-19 ARDS lung, and correlated with TF expression (fibrin, R2  = .52, P < .001; PF4, R2  = .59, P < .001). CONCLUSIONS: These data suggest that upregulation of TF expression is associated with thrombus formation in COVID-19 lungs and could be a key therapeutic target. Correlation of TF expression with SARS-CoV-2 in lungs of COVID-19 patients also raises the possibility of direct TF induction by the virus.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pulmão , Tromboplastina , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA