Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biomed Eng Lett ; 14(3): 605-616, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38645591

RESUMO

Wound healing involves a complex and dynamic interplay among various cell types, cytokines, and growth factors. Macrophages and transforming growth factor-ß1 (TGF-ß1) play an essential role in different phases of wound healing. Cold atmospheric plasma has a wide range of applications in the treatment of chronic wounds. Hence, we aimed to investigate the safety and efficacy of a custom-made plasma device in a full-thickness skin defect mouse model. Here, we investigated the wound tissue on days 6 and 12 using histology, qPCR, and western blotting. During the inflammation phase of wound repair, macrophages play an important role in the onset and resolution of inflammation, showing decreased F4/80 on day 6 of plasma treatment and increased TGF-ß1 levels. The plasma-treated group showed better epidermal epithelialization, dermal fibrosis, collagen maturation, and reduced inflammation than the control group. Our findings revealed that floating electrode-dielectric barrier discharge (FE-DBD)-based atmospheric-pressure plasma promoted significantly faster wound healing in the plasma-treated group than that in the control group with untreated wounds. Hence, plasma treatment accelerated wound healing processes without noticeable side effects and suppressed pro-inflammatory genes, suggesting that FE-DBD-based plasma could be a potential therapeutic option for treating various wounds.

2.
Hum Genome Var ; 11(1): 6, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272864

RESUMO

Leber's hereditary optic neuropathy (LHON) is a mitochondrial hereditary disease in which visual loss affects complex 1 activity of the electron transport chain of mitochondria. It first manifests as painless dulling or blurry in one or even both eyes, and as it develops, sharpness and color perception are lost. In addition to primary mitochondrial DNA (mtDNA) mutations, there are also other environmental and epigenetic factors involved in the pathogenesis of LHON. One of the most common locations for deadly pathogenic mutations in humans is the human complex I accessory NDUFS4 subunit gene. The iron-sulfur clusters of the electron input domain were distorted in the absence of NDUFS4, which reduced complex I function and elevated the production of reactive oxygen species. Therefore, here, we studied the epigenetic alterations of NDUFS4 by focusing on histone activation and repressive markers. We isolated peripheral blood mononuclear cells (PBMCs) from LHON patients and healthy individuals and examined epigenetic modifications in ND4 mutant cells and control cells. Chromatin immunoprecipitation-qRT PCR (ChIP-qRT PCR) assays were performed to investigate the modifications of histones. In comparison to their controls, both LHON patients and ND4 mutant cells exhibited a significant enrichment in activation and repressive markers. This finding indicates that these modifications might mitigate the impact of LHON mutations on complex 1 and aid in elucidating the mechanism underlying the progression of LHON disease.

3.
Cell Mol Neurobiol ; 43(8): 3983-3996, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831228

RESUMO

Parkinson's disease (PD) is caused due to degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) which leads to the depletion of dopamine in the body. The lack of dopamine is mainly due to aggregation of misfolded α-synuclein which causes motor impairment in PD. Dopamine is also required for normal retinal function and the light-dark vision cycle. Misfolded α-synuclein present in inner retinal layers causes vision-associated problems in PD patients. Hence, individuals with PD also experience structural and functional changes in the retina. Mutation in LRRK2, PARK2, PARK7, PINK1, or SNCA genes and mitochondria dysfunction also play a role in the pathophysiology of PD. In this review, we discussed the different etiologies which lead to PD and future prospects of employing non-invasive techniques and retinal changes to diagnose the onset of PD earlier.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Dopamina , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo , Diagnóstico Precoce , Retina/metabolismo
5.
Acta Histochem ; 125(4): 152041, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37167794

RESUMO

A stem cell is a particular group of cells that has the extraordinary potential to convert within the body into particular cell types. They are used to regenerate tissues and cells in the body that have been damaged or destroyed by the disease. Stem cells come in three different varieties: adult stem cells, embryonic stem cells and induced pluripotent stem cells (iPSCs). Embryonic stem cells have a high chance of immune rejection and also have ethical dilemmas and iPSCs have genetic instability. Adult stem cells are difficult to analyze and extract for research since they are frequently insufficient in native tissues. However, mesenchymal stem cells (MSC) one of the categories of adult stem cells are stromal cells with a variety of potentials that can differentiate into a wide range of cell types. MSCs can be transplanted into a variety of people without worrying about rejection because they have demonstrated the ability to prevent an adverse reaction from the immune system. These transplants have powerful anti-inflammatory and immunosuppressive effects and greatly enhance the body's inherent healing capacity. While MSCs do not offer treatment for illnesses, the idea behind them is to enable the body to recover sufficiently for a protracted reduction in symptoms. In many cases, this is sufficient to significantly enhance the patient's well-being. Inspite of several advantages some potential long-term concerns connected to MSC therapy are maldifferentiation, immunosuppression and cancerous tumor growth. In this review, we will compare the mesenchymal stem cells with other stem cells with respect to the source of origin, their properties and therapeutic applications, and discuss the MSC's disadvantages.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Adulto , Humanos , Células-Tronco Embrionárias , Células-Tronco Pluripotentes Induzidas/metabolismo , Transdução de Sinais , Transplante de Células-Tronco Mesenquimais/métodos
6.
J Mol Neurosci ; 73(4-5): 214-224, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36930427

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disability that causes social impairment, debilitated verbal or nonverbal conversation, and restricted/repeated behavior. Recent research reveals that mitochondrial dysfunction and oxidative stress might play a pivotal role in ASD condition. The goal of this case-control study was to investigate oxidative stress and related alterations in ASD patients. In addition, the impact of mitochondrial DNA (mtDNA) mutations, particularly MT-ATP6, and its link with oxidative stress in ASD was studied. We found that ASD patient's plasma had lower superoxide dismutase (SOD) and higher catalase (CAT) activity, resulting in lower SOD/CAT ratio. MT-ATP6 mutation analysis revealed that four variations, 8865 G>A, 8684 C>T, 8697 G>A, and 8836 A>G, have a frequency of more than 10% with missense and synonymous (silent) mutations. It was observed that abnormalities in mitochondrial complexes (I, III, V) are more common in ASD, and it may have resulted in MT-ATP6 changes or vice versa. In conclusion, our findings authenticate that oxidative stress and genetics both have an equal and potential role behind ASD and we recommend to conduct more such concurrent research to understand their unique mechanism for better diagnosis and therapeutic for ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Índia , DNA Mitocondrial/genética , Estresse Oxidativo , Antioxidantes , Superóxido Dismutase , ATPases Mitocondriais Próton-Translocadoras/genética
7.
J Cell Physiol ; 238(2): 329-354, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502506

RESUMO

Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.


Assuntos
MicroRNAs , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , MicroRNAs/genética , Doença de Parkinson/metabolismo , Medicina de Precisão , Animais
8.
Genes Dis ; 9(3): 610-637, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35782976

RESUMO

Ocular cells like, retinal pigment epithelium (RPE) is a highly specialized pigmented monolayer of post-mitotic cells, which is located in the posterior segment of the eye between neuro sensory retina and vascular choroid. It functions as a selective barrier and nourishes retinal visual cells. As a result of high-level oxygen consumption of retinal cells, RPE cells are vulnerable to chronic oxidative stress and an increased level of reactive oxygen species (ROS) generated from mitochondria. These oxidative stress and ROS generation in retinal cells lead to RPE degeneration. Various sources including mtDNA damage could be an important factor of oxidative stress in RPE. Gene therapy and mitochondrial transfer studies are emerging fields in ocular disease research. For retinal degenerative diseases stem cell-based transplantation methods are developed from basic research to preclinical and clinical trials. Translational research contributions of gene and cell therapy would be a new strategy to prevent, treat and cure various ocular diseases. This review focuses on the effect of oxidative stress in ocular cell degeneration and recent translational researches on retinal degenerative diseases to cure blindness.

9.
Int Ophthalmol ; 42(9): 2949-2964, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35357640

RESUMO

BACKGROUND: Optic neuropathy has become a new typical syndromic multi-system disease that leads to optic atrophy. This review discusses potential treatments and advances of Leber's hereditary optic neuropathy (LHON), a sporadic genetic disorder. LHON is caused due to slight mutations in mitochondria leading to mitochondrial dysfunction, causing vision loss. There are no current significant treatments that have been proven to work for LHON. METHODS: However, extensive review was carried out on capable studies that have shown potential treatment sensory systems and are being evaluated currently. Some of these studies are in clinical trials, whereas other ones are still being planned. Here, we focus more on treatment based on mesenchymal stem cells-mediated mitochondrial transfer via various techniques. We discuss different mitochondrial transfer modes and possible ways to understand the mitochondria transfer technique's phenotypic characteristics. CONCLUSION: It is clearly understood that transfer of healthy mitochondria from MSC to target cell would regulate the range of reactive oxygen species and ATP'S, which are majorly responsible for mutation upon irregulating. Therefore, mitochondrial transfer is suggested and discussed in this review with various aspects. The graphical abstract represents different means of mitochondrial transport like (a) Tunnelling nanotubules, (b) Extracellular vesicles, (c) Cell fusion and (d) Gap junctions. In (a) Tunnelling nanotubules, the signalling pathways TNF- α/TNF αip2 and NFkB/TNF αep2 are responsible for forming tunnels. Also, Miro protein acts as cargo for the transport of mitochondria with myosin's help in the presence of RhoGTPases [35]. In (b) Extracellular vesicles, the RhoA ARF6 contributes to Actin/Cytoskeletal rearrangement leading to the shedding of microvesicles. Coming to (c) Cell fusion when there is a high amount of ATP, the cells tend to fuse when in close proximity leading to the transfer of mitochondria via EFF-1/HAP2 [48]. In (d) Gap Junctions, Connexin43 is responsible for the intracellular channel in the presence of more ATP [86].


Assuntos
Células-Tronco Mesenquimais , Atrofia Óptica Hereditária de Leber , Trifosfato de Adenosina , DNA Mitocondrial , Humanos , Mitocôndrias , Mutação , Espécies Reativas de Oxigênio
10.
J Biomol Struct Dyn ; 40(10): 4532-4542, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33305988

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents an unprecedented challenge to global public health with researchers striving to find a possible therapeutic candidate that could limit the spread of the virus. In this context, the present study employed an in silico molecular interaction-based approach to estimate the inhibitory potential of the phytochemicals from ethnomedicinally relevant Indian plants including Justicia adhatoda, Ocimum sanctum and Swertia chirata, with reported antiviral activities against crucial SARS-CoV-2 proteins. SARS-CoV-2 proteins associated with host attachment and viral replication namely, spike protein, main protease enzyme Mpro and RNA-dependent RNA polymerase (RdRp) are promising druggable targets for COVID-19 therapeutic research. Extensive molecular docking of the phytocompounds at the binding pockets of the viral proteins revealed their promising inhibitory potential. Subsequent assessment of physicochemical features and potential toxicity of the compounds followed by robust molecular dynamics simulations and analysis of MM-PBSA energy scoring function revealed anisotine against SARS-CoV-2 spike and Mpro proteins and amarogentin against SARS-CoV-2 RdRp as potential inhibitors. It was interesting to note that these compounds displayed significantly higher binding energy scores against the respective SARS-CoV-2 proteins compared to the relevant drugs that are currently being targeted against them. Present research findings confer scopes to explore further the potential of these compounds in vitro and in vivo towards deployment as efficient SARS-CoV-2 inhibitors and development of novel effective therapeutics.Communicated by Ramaswamy H. Sarma.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Iridoides , SARS-CoV-2 , Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , Humanos , Iridoides/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
11.
Mol Neurobiol ; 58(10): 5303-5311, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34279772

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by impaired social interaction and behavioural abnormalities. Growing evidence proved that impairment in mitochondrial functions could inhibit energy production and may contribute to the onset of ASD. Genetic variants in the genes of mitochondrial DNA (mtDNA) could interrupt the normal energy metabolism and production in the brain which lead to a wide range of structural and functional changes in the brain resulting in ASD. The present study aims to compare the activities of mitochondrial electron transport chain (ETC) complex I, pyruvate dehydrogenase (PDH) and specific mitochondrial DNA gene (MT-ND1 and MT-ND4) variants associated with ASD subjects in the Tamil Nadu population. Mutational analysis revealed that most mutations in ASD subjects showed synonymous type followed by missense in both the ND1 and ND4 genes. Interestingly, we found that the complex I and PDH dysfunctions may have a role in ASD compared to the controls (p ≤ 0.0001). Hence, the results of the present study suggest that mitochondrial dysfunction, specifically the complex I genes, may play a major role in the onset of ASD, concluding that further research on mitochondrial genes are mandatory to unravel the mechanism behind ASD pathogenesis.


Assuntos
Transtorno do Espectro Autista/genética , Complexo I de Transporte de Elétrons/genética , Mutação/genética , NADH Desidrogenase/genética , Complexo Piruvato Desidrogenase/genética , Adolescente , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/metabolismo , Criança , Pré-Escolar , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Ativação Enzimática/fisiologia , Feminino , Humanos , Índia/epidemiologia , Masculino , Polimorfismo de Nucleotídeo Único/genética , Vigilância da População , Complexo Piruvato Desidrogenase/metabolismo
12.
Environ Res ; 201: 111643, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34237335

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) still remains on an upsurge trend. The second wave of this disease has led to panic in many countries, including India and some parts of the world suffering from the third wave. As there are no proper treatment options or remedies available for this deadly infection, supportive care equipment's such as oxygen cylinders, ventilators and heavy use of steroids play a vital role in the management of COVID-19. In the midst of this pandemic, the COVID-19 patients are acquiring secondary infections such as mucormycosis also known as black fungus disease. Mucormycosis is a serious, but rare opportunistic fungal infection that spreads rapidly, and hence prompt diagnosis and treatment are necessary to avoid high rate of mortality and morbidity rates. Mucormycosis is caused by the inhalation of its filamentous (hyphal form) fungi especially in the patients who are immunosuppressed. Recent studies have documented alarming number of COVID-19 patients with mucormycosis infection. Most of these patients had diabetes and were administered steroids for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and were consequently more prone to mucormycosis. Hence, the present review emphasizes mucormycosis and its related conditions, its mechanism in normal and COVID-19 affected individuals, influencing factors and challenges to overcome this black mold infection. Early identification and further investigation of this fungus will significantly reduce the severity of the disease and mortality rate in COVID-19 affected patients.


Assuntos
COVID-19 , Mucormicose , Humanos , Mucormicose/epidemiologia , Mucormicose/terapia , Pandemias , Medição de Risco , SARS-CoV-2
13.
Environ Res ; 197: 111015, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775678

RESUMO

The advent of COVID-19 has kept the whole world on their toes. Countries are maximizing their efforts to combat the virus and to minimize the infection. Since infectious microorganisms may be transmitted by variety of routes, respiratory and facial protection is required for those that are usually transmitted via droplets/aerosols. Therefore this pandemic has caused a sudden increase in the demand for personal protective equipment (PPE) such as gloves, masks, and many other important items since, the evidence of individual-to-individual transmission (through respiratory droplets/coughing) and secondary infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). But the disposal of these personal protective measures remains a huge question mark towards the environmental impact. Huge waste generation demands proper segregation according to waste types, collection, and recycling to minimize the risk of infection spread through aerosols and attempts to implement measures to monitor infections. Hence, this review focuses on the impact of environment due to improper disposal of these personal protective measures and to investigate the safe disposal methods for these protective measures by using the safe, secure and innovative biological methods such as the use of Artificial Intelligence (AI) and Ultraviolet (UV) lights for killing such deadly viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Inteligência Artificial , Humanos , Pandemias , Equipamento de Proteção Individual , Resíduos Sólidos
14.
Eur J Pharmacol ; 894: 173815, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33345850

RESUMO

Parkinson's disease (PD) is a complex and widespread neurodegenerative disease characterized by depletion of midbrain dopaminergic (DA) neurons. Key issues are the development of therapies that can stop or reverse the disease progression, identification of dependable biomarkers, and better understanding of the pathophysiological mechanisms of PD. RhoA-ROCK signals appear to have an important role in PD symptoms, making it a possible approach for PD treatment strategies. Activation of RhoA-ROCK (Rho-associated coiled-coil containing protein kinase) appears to stimulate various PD risk factors including aggregation of alpha-synuclein (αSyn), dysregulation of autophagy, and activation of apoptosis. This manuscript reviews current updates about the biology and function of the RhoA-ROCK pathway and discusses the possible role of this signaling pathway in causing the pathogenesis of PD. We conclude that inhibition of the RhoA-ROCK signaling pathway may have high translational potential and could be a promising therapeutic target in PD.


Assuntos
Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Transdução de Sinais , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Axônios/metabolismo , Humanos , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/química , Proteína rhoA de Ligação ao GTP/agonistas , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
15.
Curr Opin Environ Sci Health ; 17: 72-81, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33015428

RESUMO

Coronavirus disease 2019 (COVID-19) has grown to be global public health emergency. The biosurfactants (BSs) are surface-active biomolecules with unique properties and wide applications. Several microbes synthesize secondary metabolites with surface-active properties, which have a wide range of anti-inflammatory and anti-viral roles. The monocytes and neutrophils are activated by bacteria, which subsequently result in high secretion of pro-inflammatory cytokines (TNF-α, IL-6, IL-8, IL-12, Il-18 and IL-1ß) and toll-like receptors-2 (TLR-2). Following the inflammatory response, BSs induce the production of cationic proteins, reactive oxygen species (ROS) and lysozyme, and thus can be used for therapeutic purposes. This article provides recent advances in the anti-inflammatory and antiviral activities of BSs and discusses the potential use of these compounds against COVID-19, highlighting the need for in-vitro and in-vivo approaches to confirm this hypothesis. This suggestion is necessary because there are still no studies that have focused on the use of BSs against COVID-19.

16.
J Reprod Immunol ; 142: 103213, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33080435

RESUMO

COVID-19 is a present-day complex pandemic infection with unpredictable levels of morbidity and mortality in various global populations. COVID-19 is associated with the different comorbidities with its change in biological function such as causing heart dysfunction via deregulating ACE-2 receptor, gastrointestinal risk via causing vomiting, diarrhea, and abdominal pain, chronic kidney disease via proteinuria and hematuria, diabetes mellitus, liver injury via increasing ALT, AST and bilirubin level, lung injury, CNS risk, ocular risk, and cancer risk. In this, we are focused on the COVID-19 connected with male infertility. Some of the studies show that the patients of COVID-19 are associated with impaired spermatogenesis. Impaired spermatogenesis via COVID-19 decreases the level of testosterone by disturbing cytokines such as TNF-α, IL-4, IL-6, and IL-12 and further, attenuates the sperm count. COVID-19 is causing inflammation via TNF-α and interferons. IL-4 plays an eminent role in the activation of the JAK-STAT pathway and leads to the disturbing pro-inflammatory cytokine as well as further cause's male infertility. Th2 activates the IL-4 through IgG and IgE and mediates apoptosis with the triggering of STAT signaling. The activated STAT signaling augments Batf/Irf4, and the Bach2/Batf pathway. On the other hand, SARS-CoV-2 is activating the level of Th2 cells. So, we hypothesized that the augmented Th2 cells would disturb the level of IL-4, JAK-STAT signaling, Batf/Irf4, and Bach2/Batf pathway. The disturbed IL-4 decreases the level of the ACE-2 with the inflammation. This further leads to male infertility in COVID-19 patients. So, in this hypothesis, we focused on the role of IL-4 in COVID-19 patients associated with male infertility via Th2 cells and JAK-STAT signaling.


Assuntos
COVID-19/complicações , Infertilidade Masculina/virologia , Interleucina-4/imunologia , Transdução de Sinais/imunologia , Humanos , Infertilidade Masculina/imunologia , Infertilidade Masculina/fisiopatologia , Masculino , SARS-CoV-2
17.
BMB Rep ; 53(8): 400-412, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32731913

RESUMO

The world has witnessed unimaginable damage from the coronavirus disease-19 (COVID-19) pandemic. Because the pandemic is growing rapidly, it is important to consider diverse treatment options to effectively treat people worldwide. Since the immune system is at the hub of the infection, it is essential to regulate the dynamic balance in order to prevent the overexaggerated immune responses that subsequently result in multiorgan damage. The use of stem cells as treatment options has gained tremendous momentum in the past decade. The revolutionary measures in science have brought to the world mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-Exo) as therapeutic opportunities for various diseases. The MSCs and MSCExos have immunomodulatory functions; they can be used as therapy to strike a balance in the immune cells of patients with COVID-19. In this review, we discuss the basics of the cytokine storm in COVID-19, MSCs, and MSC-derived exosomes and the potential and stem-cell-based ongoing clinical trials for COVID-19. [BMB Reports 2020; 53(8): 400-412].


Assuntos
Infecções por Coronavirus/terapia , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais , Pneumonia Viral/terapia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Humanos , Sistema Imunitário/metabolismo , Imunomodulação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2
18.
BMB Rep ; 53(4): 191-205, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32336317

RESUMO

The unexpected pandemic set off by the novel coronavirus 2019 (COVID-19) has caused severe panic among people worldwide. COVID-19 has created havoc, and scientists and physicians are urged to test the efficiency and safety of drugs used to treat this disease. In such a pandemic situation, various steps have been taken by the government to control and prevent the Severe Acute Respiratory Syndrome coronavirus 2 (SARSCoV- 2). This pandemic situation has forced scientists to rework strategies to combat infectious diseases through drugs, treatment, and control measures. COVID-19 treatment requires both limiting viral multiplication and neutralizing tissue damage induced by an inappropriate immune reaction. Currently, various diagnostic kits to test for COVID-19 are available, and repurposing therapeutics for COVID-19 has shown to be clinically effective. As the global demand for diagnostics and therapeutics continues to rise, it is essential to rapidly develop various algorithms to successfully identify and contain the virus. This review discusses the updates on specimens/samples, recent efficient diagnostics, and therapeutic approaches to control the disease and repurposed drugs mainly focusing on chloroquine/hydroxychloroquine and convalescent plasma (CP). More research is required for further understanding of the influence of diagnostics and therapeutic approaches to develop vaccines and drugs for COVID-19. [BMB Reports 2020; 53(4): 191-205].


Assuntos
Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/diagnóstico , Pneumonia Viral/tratamento farmacológico , Betacoronavirus , COVID-19 , Teste para COVID-19 , Cloroquina/uso terapêutico , Técnicas de Laboratório Clínico , Infecções por Coronavirus/terapia , Reposicionamento de Medicamentos , Humanos , Hidroxicloroquina/uso terapêutico , Imunização Passiva , Pandemias , Kit de Reagentes para Diagnóstico , SARS-CoV-2 , Manejo de Espécimes , Tratamento Farmacológico da COVID-19 , Soroterapia para COVID-19
19.
Sci Total Environ ; 725: 138277, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32278175

RESUMO

The novel Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, which is the causative agent of a potentially fatal disease that is of great global public health concern. The outbreak of COVID-19 is wreaking havoc worldwide due to inadequate risk assessment regarding the urgency of the situation. The COVID-19 pandemic has entered a dangerous new phase. When compared with SARS and MERS, COVID-19 has spread more rapidly, due to increased globalization and adaptation of the virus in every environment. Slowing the spread of the COVID-19 cases will significantly reduce the strain on the healthcare system of the country by limiting the number of people who are severely sick by COVID-19 and need hospital care. Hence, the recent outburst of COVID-19 highlights an urgent need for therapeutics targeting SARS-CoV-2. Here, we have discussed the structure of virus; varying symptoms among COVID-19, SARS, MERS and common flu; the probable mechanism behind the infection and its immune response. Further, the current treatment options, drugs available, ongoing trials and recent diagnostics for COVID-19 have been discussed. We suggest traditional Indian medicinal plants as possible novel therapeutic approaches, exclusively targeting SARS-CoV-2 and its pathways.


Assuntos
Infecções por Coronavirus , Pandemias , Pneumonia Viral , Betacoronavirus , COVID-19 , Humanos , SARS-CoV-2
20.
Brain Res Bull ; 157: 169-179, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035946

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder accompanied by depletion of dopamine(DA) and loss of dopaminergic (DAergic) neurons in the brain that is believed to be responsible for the motor and non-motor symptoms of PD. Dopamine Transporter (DAT) is essential for reuptake of DA into the presynaptic terminal, thereby controlling the availability and spatial activity of released DA. Parkin interacts with proteins involved in the endosomal pathway, suggesting that presynaptic Parkin could regulate the expression of DAT in the plasma membrane. Parkin mutations lead to early synaptic damage and it appears as a crucial gene having a vast functioning area. PD-specific induced pluripotent stem cells (iPSCs) derived DA neurons exist as a potential tool for in-vitro modeling of PD, as they can recapitulate the pathological features of PD. The exact mechanism of PARKIN influenced DAT variations and changes in DA reuptake by DAT remain unknown. Hence, DAT and PARKIN mutated PD-specific iPSCs-derived DA neurons could provide important clues for elucidating the pathogenesis and mechanism of PD. This mysterious and hidden connection may prove to be a boon in disguise, hence, here we review the influence of PARKIN and DAT on DA mechanism and will discuss how these findings underpin the concept of how downregulation or upregulation of DAT is influenced by PARKIN. We conclude that the establishment of new model for PD with a combination of DAT and PARKIN would have a high translational potential, which includes the identification of drug targets and testing of known and novel therapeutic agents.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Humanos , Doença de Parkinson/genética , Sinapses/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA