Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 25(12): 105512, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465136

RESUMO

Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the "sources of uncertainty" framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to-implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research.

2.
Philos Trans A Math Phys Eng Sci ; 379(2194): 20200091, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33583264

RESUMO

The most mature aspect of applying artificial intelligence (AI)/machine learning (ML) to problems in the atmospheric sciences is likely post-processing of model output. This article provides some history and current state of the science of post-processing with AI for weather and climate models. Deriving from the discussion at the 2019 Oxford workshop on Machine Learning for Weather and Climate, this paper also presents thoughts on medium-term goals to advance such use of AI, which include assuring that algorithms are trustworthy and interpretable, adherence to FAIR data practices to promote usability, and development of techniques that leverage our physical knowledge of the atmosphere. The coauthors propose several actionable items and have initiated one of those: a repository for datasets from various real weather and climate problems that can be addressed using AI. Five such datasets are presented and permanently archived, together with Jupyter notebooks to process them and assess the results in comparison with a baseline technique. The coauthors invite the readers to test their own algorithms in comparison with the baseline and to archive their results. This article is part of the theme issue 'Machine learning for weather and climate modelling'.

3.
Front Mar Sci ; 6: 391, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31534949

RESUMO

Developments in observing system technologies and ocean data assimilation (DA) are symbiotic. New observation types lead to new DA methods and new DA methods, such as coupled DA, can change the value of existing observations or indicate where new observations can have greater utility for monitoring and prediction. Practitioners of DA are encouraged to make better use of observations that are already available, for example, taking advantage of strongly coupled DA so that ocean observations can be used to improve atmospheric analyses and vice versa. Ocean reanalyses are useful for the analysis of climate as well as the initialization of operational long-range prediction models. There are many remaining challenges for ocean reanalyses due to biases and abrupt changes in the ocean-observing system throughout its history, the presence of biases and drifts in models, and the simplifying assumptions made in DA solution methods. From a governance point of view, more support is needed to bring the ocean-observing and DA communities together. For prediction applications, there is wide agreement that protocols are needed for rapid communication of ocean-observing data on numerical weather prediction (NWP) timescales. There is potential for new observation types to enhance the observing system by supporting prediction on multiple timescales, ranging from the typical timescale of NWP, covering hours to weeks, out to multiple decades. Better communication between DA and observation communities is encouraged in order to allow operational prediction centers the ability to provide guidance for the design of a sustained and adaptive observing network.

4.
Sci Rep ; 9(1): 10993, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358814

RESUMO

The causes of the extreme and persistent warming in the Northeast Pacific from the winter of 2013/14 to that of 2014/15 are still not fully understood. While global warming may have contributed, natural influences may also have played a role. El Niño events are often implicated in anomalously warm conditions along the US West Coast (USWC). However, the tropical Pacific sea surface temperature (SST) anomalies were generally weak during 2014, calling into question their role in the USWC warming. In this study, we identify tropical Pacific "sensitivity patterns" that optimally force USWC warming at a later time. We find that such sensitivity patterns do not coincide with the mature SST anomaly patterns usually associated with ENSO, but instead include elements associated with ENSO SST precursors and SST anomalies in the central/western equatorial Pacific. El Niño events that produce large USWC warming, irrespective of their magnitude, do project on the sensitivity pattern and are characterized by a distinct evolution of the North Pacific atmospheric and oceanic fields. However, even weak tropical SST anomalies in the right location, and not necessarily associated with ENSO, can significantly influence USWC conditions and enhance their predictability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA